分享
分享赚钱 收藏 举报 版权申诉 / 23

类型2022-2023学年度人教版九年级数学上册第二十四章圆重点解析试题.docx

  • 上传人:a****
  • 文档编号:641580
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:23
  • 大小:401.65KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 度人 九年级 数学 上册 第二 十四 重点 解析 试题
    资源描述:

    1、人教版九年级数学上册第二十四章圆重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知扇形的圆心角为,半径为,则弧长为()ABCD2、如图,已知O的半径为4,M是O内一点,且OM2,则过点M的所有弦

    2、中,弦长是整数的共有()A1条B2条C3条D4条3、已知:如图,AB是O的直径,点P在BA的延长线上,弦CD交AB于E,连接OD、PC、BC,AOD2ABC,PD,过E作弦GFBC交圆与G、F两点,连接CF、BG则下列结论:CDAB;PC是O的切线;ODGF;弦CF的弦心距等于BG则其中正确的是()ABCD4、如图1,一个扇形纸片的圆心角为90,半径为6如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A6B69C12D5、已知O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A30B60C30或150D60或120

    3、6、已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()ABCD7、如图,O的直径垂直于弦,垂足为若,则的长是()ABCD8、如图,在ABC中, AG平分CAB,使用尺规作射线CD,与AG交于点E,下列判断正确的是()AAG平分CDBC点E是ABC的内心D点E到点A,B,C的距离相等9、已知圆的半径为扇形的圆心角为,则扇形的面积为()ABCD10、如图,AB为的直径,C,D为上的两点,若,则的度数为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AB为圆O的切线,点A为切点,OB交圆O于点C,点D在圆O上,连接AD、CD、OA,若ADC=25

    4、,则B的度数为_2、如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为_cm(结果用表示)3、已知圆锥的底面半径为,侧面展开图的圆心角是180,则圆锥的高是_4、下列说法直径是弦;圆心相同,半径相同的两个圆是同心圆;两个半圆是等弧;经过圆内一定点可以作无数条直径正确的是_填序号5、如图,是的直径,弦于点,且,则的半径为_三、解答题(5小题,每小题10分,共计50分)1、如图,BAC的平分线交ABC的外接圆于点D,ABC的平分线交AD于点E(1)求证:DEDB;(2)若BAC90,BD4,求ABC外接圆的半径2、如图,在中,的中点(1)求证:三点在以为圆心的圆上;(2

    5、)若,求证:四点在以为圆心的圆上3、已知PA,PB分别与O相切于点A,B,APB80,C为O上一点(1)如图,求ACB的大小;(2)如图,AE为O的直径,AE与BC相交于点D若ABAD,求EAC的大小4、如图,AD、BC是O的两条弦,且ABCD,求证:ADBC5、已知:如图,、是的切线,切点分别是、,为上一点,过点作的切线,交、于、点,已知,求的周长-参考答案-一、单选题1、D【解析】【分析】根据扇形的弧长公式计算即可【详解】扇形的圆心角为 30 ,半径为 2cm ,弧长cm故答案为:D【考点】本题主要考查扇形的弧长,熟记扇形的弧长公式是解题的关键2、C【解析】【分析】过点M作ABOM交O于点

    6、A、B,根据勾股定理求出AM,根据垂径定理求出AB,进而得到答案【详解】解:过点M作ABOM交O于点A、B,连接OA,则AMBMAB,在RtAOM中,AM,AB2AM,则过点M的所有弦8,则弦长是整数的共有长度为7的两条,长度为8的一条,共三条,故选:C【考点】本题考查了垂径定理,勾股定理,掌握垂直于选的直径平分这条弦,并平分弦所对的两条弧是解题关键3、A【解析】【分析】连接BD、OC、AG、AC,过O作OQCF于Q,OZBG于Z,求出ABC=ABD,从而有弧AC=弧AD,由垂径定理的推论即可判断的正误;由CDPB可得到P+PCD=90,结合P=DCO、等边对等角的知识等量代换可得到PCO=9

    7、0,据此可判断的正误;假设ODGF成立,则可得到ABC=30,判断由已知条件能否得到ABC的度数即可判断的正误;求出CF=AG,根据垂径定理和三角形中位线的知识可得到CQ=OZ,通过证明OCQBOZ可得到OQ=BZ,结合垂径定理即可判断.【详解】连接BD、OC、AG,过O作OQCF于Q,OZBG于Z,OD=OB,ABD=ODB,AOD=OBD+ODB=2OBD,AOD=2ABC,ABC=ABD,弧AC=弧AD,AB是直径,CDAB,正确;CDAB,P+PCD=90,OD=OC,OCD=ODC=P,PCD+OCD=90,PCO=90,PC是切线,正确;假设ODGF,则AOD=FEB=2ABC,3

    8、ABC=90,ABC=30,已知没有给出B=30,错误;AB是直径,ACB=90,EFBC,ACEF,弧CF=弧AG,AG=CF,OQCF,OZBG,CQ=AG,OZ=AG,BZ=BG,OZ=CQ,OC=OB,OQC=OZB=90,OCQBOZ,OQ=BZ=BG,正确故选A【考点】本题是圆的综合题,考查了垂径定理及其推论,切线的判定,等腰三角形的性质,平行线的性质,全等三角形的判定与性质.解答本题的关键是熟练掌握圆的有关知识点.4、A【解析】【分析】连接OD,如图,利用折叠性质得由弧AD、线段AC和CD所围成的图形的面积等于阴影部分的面积,AC=OC,则OD=2OC=6,CD=3,从而得到CD

    9、O=30,COD=60,然后根据扇形面积公式,利用由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD-SCOD,进行计算即可【详解】解:连接OD,如图,扇形纸片折叠,使点A与点O恰好重合,折痕为CD,ACOC,OD2OC6,CD,CDO30,COD60,由弧AD、线段AC和CD所围成的图形的面积S扇形AODSCOD6,阴影部分的面积为6.故选A【考点】本题考查了扇形面积的计算:阴影面积的主要思路是将不规则图形面积转化为规则图形的面积记住扇形面积的计算公式也考查了折叠性质5、D【解析】【分析】由图可知,OA=10,OD=5根据特殊角的三角函数值求出AOB的度数,再根据圆周定理求出C的度数,

    10、再根据圆内接四边形的性质求出E的度数即可【详解】解:由图可知,OA=10,OD=5,在RtOAD中,OA=10,OD=5,AD=,tan1=,1=60,同理可得2=60,AOB=1+2=60+60=120,C=60,E=180-60=120即弦AB所对的圆周角的度数是60或120,故选D【考点】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键6、B【解析】【分析】根据题意可以求得半径,进而解答即可【详解】因为圆内接正三角形的面积为,所以圆的半径为,所以该圆的内接正六边形的边心距sin601,故选B【考点】本题考查正多边形和圆,解答本

    11、题的关键是明确题意,求出相应的图形的边心距7、C【解析】【分析】根据直角三角形的性质可求出CE=1,再根据垂径定理可求出CD【详解】解:O的直径垂直于弦, ,CE=1CD=2故选:C【考点】本题考查了直角三角形的性质,垂径定理等知识点,能求出CE=DE是解此题的关键8、C【解析】【分析】根据作法可得CD平分ACB,结合题意即可求解【详解】解:由作法得CD平分ACB,AG平分CAB,E点为ABC的内心故答案为:C【考点】此题考查了尺规作图(角平分线),以及三角形角平分线的性质,熟练掌握相关基本性质是解题的关键9、B【解析】【分析】扇形面积公式为: 利用公式直接计算即可得到答案【详解】解: 圆的半

    12、径为扇形的圆心角为, 故选:【考点】本题考查的是扇形的面积的计算,掌握扇形的面积的计算公式是解题的关键10、B【解析】【分析】连接AD,如图,根据圆周角定理得到,然后利用互余计算出,从而得到的度数【详解】解:连接AD,如图,AB为的直径,故选B【考点】本题主要考查了同弦所对的圆周角相等,直径所对的圆周角是直角,解题的关键在于能够熟练掌握相关知识进行求解.二、填空题1、40【解析】【分析】根据圆周角和圆心角的关系,可以得到AOC的度数,然后根据AB为O的切线和直角三角形的两个锐角互余,即可求得B的度数【详解】解:ADC=25,AOC=50,AB为O的切线,点A为切点,OAB=90,B=90-AO

    13、C=90-50=40,故答案为:40【考点】本题考查切线的性质、圆周角定理、直角三角形的性质,利用数形结合的思想解答问题是解答本题的关键2、【解析】【分析】先求出圆锥的底面半径,然后根据圆锥的展开图为扇形,结合圆周长公式进行求解即可【详解】设底面圆的半径为rcm,由勾股定理得:r=6,2r=26=12,故答案为12【考点】本题考查了圆锥的计算,解答本题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系3、【解析】【分析】设圆锥的母线长为R cm,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到25=,然后解方程即可得母线长

    14、,然后利用勾股定理求得圆锥的高即可【详解】解:设圆锥的母线长为R cm,根据题意得25=,解得R=10即圆锥的母线长为10cm,圆锥的高为:(cm)故答案为:【考点】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长4、【解析】【分析】利用圆的有关定义及性质分别判断后即可确定正确的选项.【详解】解:直径是弦,但弦不是直径,故 正确;圆心相同但半径不同的两个圆是同心圆,故 错误;若两个半圆的半径不等,则这两个半圆的弧长不相等,故错误;经过圆的圆心可以作无数条的直径,故错误.综上,正确的只有.故答案为:【考点】本题考查了圆的知识,了解有关圆

    15、的定义及性质是解答本题的关键,难度不大.5、【解析】【分析】根据垂径定理得出CE=DE,再由勾股定理得出OD2=DE2+(AE-OA)2,代入求解即可【详解】解:CDAB,CE=DE=CD,AE=CD=6,CE=DE=3,OD=OB=OA,OE=AE-OA,在RtODE中,由勾股定理可得:OD2=DE2+(AE-OA)2,即:OD2=32+(6-OD)2,解得:OD=,O的半径为:,故答案为:【考点】本题考查了垂径定理、勾股定理等知识;熟练掌握垂径定理和勾股定理是解题的关键三、解答题1、 (1)证明见解析(2)2 【解析】【详解】试题分析:由角平分线得出,得出,由圆周角定理得出证出再由三角形的

    16、外角性质得出即可得出 由得:,得出由圆周角定理得出是直径,由勾股定理求出即可得出外接圆的半径试题解析:(1)证明:平分 又 平分 连接, 是直径 平分 半径为 2、(1)见解析;(2)见解析【解析】【分析】(1)连结OC,利用直角三角形斜边中线等于斜边一半可得OA=OB=OC,所以A,B,C三点在以O为圆心,OA长为半径的圆上;(2)连结OD,可得OA=OB=OC=OD,所以A,B,C,D四点在以O为圆心,OA长为半径的圆上.【详解】解:(1)连结OC,在中,的中点,OC=OA=OB,三点在以为圆心的圆上;(2)连结OD,OA=OB=OC=OD,四点在以为圆心的圆上.【考点】此题考查了圆的定义

    17、:到定点的距离等于定长的点都在同一个圆上,直角三角形斜边中线的性质证明几个点共圆,只需要证明这几个点到某个定点的距离相等即可.3、 (1)ACB50(2)EAC20【解析】【分析】(1)连接OA、OB,根据切线性质和P=80,得到AOB=100,根据圆周角定理得到C=50;(2)连接CE,证明BCE=BAE=40,根据等腰三角形性质得到ABD=ADB=70,由三角形外角性质得到EAC=20(1)连接OA、OB,PA,PB是O的切线,OAPOBP90,AOB360909080100,由圆周角定理得,ACB AOB50;(2)连接CE,AE为O的直径,ACE90,ACB50,BCE905040,B

    18、AEBCE40,ABAD,ABDADB70,EACADBACB20【考点】本题考查了圆的切线,圆周角,等腰三角形,三角形外角,熟练掌握圆的切线性质,圆周角定理及推论,等腰三角形的性质,三角形外角性质,是解决问题的关键4、证明见解析【解析】【分析】根据AB=CD,得出,进而得出,即可解答【详解】证明:AB,CD是O的两条弦,且AB=CD,,,AD=BC【考点】此题考查圆心角、弧、弦的关系,关键是利用三者的关系解答5、的周长是【解析】【分析】根据切线长定理得出PAPB,EBEQ,FQFA,代入PEEFPFPEEQFQPF即可求出答案【详解】PA、PB是O的切线,切点分别是A、B,PAPB12cm,过Q点作O的切线,交PA、PB于E、F点,EBEQ,FQFA,PEF的周长是:PEEFPFPEEQFQPF,PEEBPFFAPBPA121224,答:PEF的周长是24cm【考点】本题主要考查对切线长定理的理解和掌握,能根据切线长定理得出PAPB、EBEQ、FQFA是解此题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度人教版九年级数学上册第二十四章圆重点解析试题.docx
    链接地址:https://www.ketangku.com/wenku/file-641580.html
    相关资源 更多
  • 专题06 机械运动(原卷版)-备战2023年中考物理精选考点专练(知识清单+基础+拔高) .docx专题06 机械运动(原卷版)-备战2023年中考物理精选考点专练(知识清单+基础+拔高) .docx
  • 专题06 机械能和简单机械【考题猜想】(解析版) .docx专题06 机械能和简单机械【考题猜想】(解析版) .docx
  • 专题06 机械能和简单机械【考题猜想】(原卷版) .docx专题06 机械能和简单机械【考题猜想】(原卷版) .docx
  • 专题06 机械能和简单机械【考点清单】(解析版) .docx专题06 机械能和简单机械【考点清单】(解析版) .docx
  • 专题06 机械能与化学能的转化模型 -【常考必刷】 2022中考物理常考计算题(能量的转化效率问题专题)之经典模型培优练习 (解析版).docx专题06 机械能与化学能的转化模型 -【常考必刷】 2022中考物理常考计算题(能量的转化效率问题专题)之经典模型培优练习 (解析版).docx
  • 专题06 机械能与化学能的转化模型 -【常考必刷】 2022中考物理常考计算题(能量的转化效率问题专题)之经典模型培优练习 (原卷版).docx专题06 机械能与化学能的转化模型 -【常考必刷】 2022中考物理常考计算题(能量的转化效率问题专题)之经典模型培优练习 (原卷版).docx
  • 专题06 期末核心考点强化练200道(十七大类)八年级(牛津译林版)(原卷版).docx专题06 期末核心考点强化练200道(十七大类)八年级(牛津译林版)(原卷版).docx
  • 专题06 期末核心考点强化练200道(十七大类)-2023-2024学年八年级上学期期末考点大串讲(牛津译林版)(原卷版).docx专题06 期末核心考点强化练200道(十七大类)-2023-2024学年八年级上学期期末考点大串讲(牛津译林版)(原卷版).docx
  • 专题06 有理数的计算_答案.docx专题06 有理数的计算_答案.docx
  • 专题06 文言文阅读(原卷版).docx专题06 文言文阅读(原卷版).docx
  • 专题06 整式中与参数有关的两种考法(解析版)(北师大版) .docx专题06 整式中与参数有关的两种考法(解析版)(北师大版) .docx
  • 专题06 数据的分析(考点清单)解析版.docx专题06 数据的分析(考点清单)解析版.docx
  • 专题06 数据的分析(考点清单)原卷版.docx专题06 数据的分析(考点清单)原卷版.docx
  • 专题06 数列解答-天津市2021-2022学年高二上学期数学期末试题分类汇编.docx专题06 数列解答-天津市2021-2022学年高二上学期数学期末试题分类汇编.docx
  • 专题06 数列-2022届广东省高三上学期期末考试数学试题分类汇编.docx专题06 数列-2022届广东省高三上学期期末考试数学试题分类汇编.docx
  • 专题06 探究质量守恒定律—2022-2023学年九年级化学上册教材实验大盘点(人教版)(学生版).docx专题06 探究质量守恒定律—2022-2023学年九年级化学上册教材实验大盘点(人教版)(学生版).docx
  • 专题06 我国的社会主义市场经济体制 .docx专题06 我国的社会主义市场经济体制 .docx
  • 专题06 我们周围的空气(解析版).docx专题06 我们周围的空气(解析版).docx
  • 专题06 情景选择专项练习(一)-2022-2023学年三年级英语上册期末专项复习试题(译林版三起).docx专题06 情景选择专项练习(一)-2022-2023学年三年级英语上册期末专项复习试题(译林版三起).docx
  • 专题06 情态动词-备战2024年中考英语真题题源解密(全国通用)(原卷版).docx专题06 情态动词-备战2024年中考英语真题题源解密(全国通用)(原卷版).docx
  • 专题06 必修一综合检测-2023年高考英语一轮复习基础知识 基本能力双清(译林版2020) .docx专题06 必修一综合检测-2023年高考英语一轮复习基础知识 基本能力双清(译林版2020) .docx
  • 专题06 必修一Unit 5 -2023年高考英语一轮复习小题多维练(人教版2019).docx专题06 必修一Unit 5 -2023年高考英语一轮复习小题多维练(人教版2019).docx
  • 专题06 形容词副词单句语法填空100题-2022-2023学年高一英语牛津译林版(2020)必修第一册.docx专题06 形容词副词单句语法填空100题-2022-2023学年高一英语牛津译林版(2020)必修第一册.docx
  • 专题06 应用文写作(最新名校模拟题)-冲刺2023年高考英语终极题型预测(新高考专用)1.docx专题06 应用文写作(最新名校模拟题)-冲刺2023年高考英语终极题型预测(新高考专用)1.docx
  • 专题06 应用文写作(最新名校模拟题)-冲刺2023年高考英语终极题型预测(新高考专用).docx专题06 应用文写作(最新名校模拟题)-冲刺2023年高考英语终极题型预测(新高考专用).docx
  • 专题06 应用文写作(最新名校模拟题)-冲刺2023年高考英语终极题型预测(全国卷专用).docx专题06 应用文写作(最新名校模拟题)-冲刺2023年高考英语终极题型预测(全国卷专用).docx
  • 专题06 应用文写作(最新名校模拟题)-冲刺2022年高考英语终极题型押题(浙江专用).docx专题06 应用文写作(最新名校模拟题)-冲刺2022年高考英语终极题型押题(浙江专用).docx
  • 专题06 应用文写作(最新名校模拟题)-冲刺2022年高考英语终极题型押题(全国卷专用).docx专题06 应用文写作(最新名校模拟题)-冲刺2022年高考英语终极题型押题(全国卷专用).docx
  • 专题06 应用文写作(6)-研读近十年高考英语满分书面表达聚焦2023高考.docx专题06 应用文写作(6)-研读近十年高考英语满分书面表达聚焦2023高考.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1