2022-2023学年度人教版八年级数学上册第十二章全等三角形单元测试试题(解析卷).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 度人 八年 级数 上册 第十二 全等 三角形 单元测试 试题 解析
- 资源描述:
-
1、八年级数学上册第十二章全等三角形单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,锐角ABC的两条高BD、CE相交于点O,且CEBD,若CBD20,则A的度数为()A20B40C60D702、
2、下列说法正确的是()近似数精确到十分位;在,中,最小的是;如图所示,在数轴上点所表示的数为;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;如图,在内一点到这三条边的距离相等,则点是三个角平分线的交点A1B2C3D43、如图为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得ABC65,ACB35,然后在M处立了标杆,使MBC65,MCB35,得到MBCABC,所以测得MB的长就是A,B两点间的距离,这里判定MBCABC的理由是()ASASBAAACSSSDASA4、已知AOB60,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分
3、别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在AOB内交于点P,以OP为边作POC15,则BOC的度数为()A15B45C15或30D15或455、如图,在中,平分交于D点,E,F分别是,上的动点,则的最小值为()ABC3D6、图,则的对应边是()ABCD7、如图,在ABC中,AC5,AB7,AD平分BAC,DEAC,DE2,则ABC的面积为()A14B12C10D78、如图,在ABC和DEF中,ABDE,ABDE,运用“SAS”判定ABCDEF,需补充的条件是()AACDFBADCBECFDACBDFE9、如图,在ABC和ABC中,ABCABC,AABC,则,满足关系()ABCD10
4、、如图,ABC与DEF是全等三角形,则图中的相等线段有()A1B2C3D4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,是的角平分线,于, 的面积是,则_2、已知AOB60,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在AOB内交于点P,以OP为边作POC15,则BOC的度数为_3、如图,在ABC中,ADBC于点D,过A作AEBC,且AEAB,AB上有一点F,连接EF若EFAC,CD4BD,则_4、如图,ABBC于B,DCBC于C,AB=6,BC=8,CD=2,点P为BC边上一动点,当BP_时,形
5、成的RtABP与RtPCD全等5、如图,在ABC中,BD=CD,BE交AD于F,AE=EF,若BE=7CE,则BF=_三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC和ADE中,AB=AD,B=D,1=2求证:BC=DE2、(1)阅读理解:问题:如图1,在四边形中,对角线平分,求证:思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题方法1:在上截取,连接,得到全等三角形,进而解决问题;方法2:延长到点,使得,连接,得到全等三角形,进而解决问题结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明(2)问题解决:如图2,在(1)的条件下,连接,当时,探究线
6、段,之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形中,过点D作,垂足为点E,请直接写出线段、之间的数量关系3、如图,在ABC中,ABBC,ABC60,线段AC与AD关于直线AP对称,E是线段BD与直线AP的交点(1)若DAE15,求证:ABD是等腰直角三角形;(2)连CE,求证:BEAE+CE4、如图,在中,ABAC,D是BA延长线上一点,E是AC的中点,连接DE并延长,交BC于点M,DAC的平分线交DM于点F求证:AFCM5、如图,ABC中,B2C,AE平分BAC(1)若ADBC于D,C35,求DAE的大小;(2)若EFAE交AC于F,求证:C2FEC-参考答案-一、单选题1、
7、B【解析】【分析】由BD、CE是高,可得BDC=CEB=90,可求BCD70,可证RtBECRtCDB(HL),得出BCDCBE70即可【详解】解:BD、CE是高,CBD20,BDC=CEB=90,BCD180902070,在RtBEC和RtCDB中,RtBECRtCDB(HL),BCDCBE70,A180707040故选:B【考点】本题考查三角形高的定义,三角形全等判定与性质,三角形内角和公式,掌握三角形高的定义,三角形全等判定与性质,三角形内角和公式是解题关键2、B【解析】【分析】根据近似数的精确度定义,可判断;根据实数的大小比较,可判断;根据点在数轴上所对应的实数,即可判断;根据反证法的
8、概念,可判断;根据角平分线的性质,可判断【详解】近似数精确到十位,故本小题错误;,最小的是,故本小题正确;在数轴上点所表示的数为,故本小题错误;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确故选B【考点】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键3、D【解析】【分析】利用全等三角形的判定方法进行分析即可【详解】解:在ABC和MBC中,MBCABC(ASA),故选:D【考点】
9、本题考查了全等三角形的应用,熟练掌握三角形全等的判定定理是解题的关键4、D【解析】【分析】根据题意作图,可得出OP为AOB的角平分线,有,以OP为边作POC15,则BOC的度数有两种情况,依据所作图形即可得解.【详解】解:(1)以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在AOB内交于点P,则OP为AOB的平分线,(2)两弧在AOB内交于点P,以OP为边作POC15,则BOC15或45,故选:D【考点】本题考查的知识点是根据题意作图并求解,依据题意作出正确的图形是解题的关键.5、D【解析】【分析】利用角平分线构造全等,使两线段可
10、以合二为一,则EC+EF的最小值即为点C到AB的垂线段长度【详解】在AB上取一点G,使AGAF在RtABC中,ACB90,AC3,BC4AB=5,CADBAD,AEAE,AEFAEG(SAS)FEGE,要求CE+EF的最小值即为求CE+EG的最小值,故当C、E、G三点共线时,符合要求,此时,作CHAB于H点,则CH的长即为CE+EG的最小值,此时,CH=,即:CE+EF的最小值为,故选:D【考点】本题考查了角平分线构造全等以及线段和差极值问题,灵活构造辅助线是解题关键6、C【解析】【分析】根据全等三角形中对应角所对的边是对应边,可知BC=DA【详解】解:ABCCDA,BAC=DCA,BAC与D
11、CA是对应角,BC与DA是对应边(对应角对的边是对应边)故选C【考点】本题考查了全等三角形中对应边的找法,解题的关键是掌握书写的特点7、B【解析】【分析】过点D作DFAB于点F,利用角平分线的性质得出,将的面积表示为面积之和,分别以AB为底,DF为高,AC为底,DE为高,计算面积即可求得【详解】过点D作DFAB于点F,AD平分BAC,DEAC,DFAB,, ,故选:B【考点】本题考查角平分线的性质,角平分线上的点到角两边的距离相等,熟记性质作出辅助线是解题关键8、C【解析】【分析】证出ABCDEF,由SAS即可得出结论【详解】解:补充BECF,理由如下:ABDE,ABCDEF,若要利用SAS判
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-641894.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
