分享
分享赚钱 收藏 举报 版权申诉 / 24

类型2022-2023学年度北师大版八年级数学上册第一章勾股定理专题练习试卷(含答案详解版).docx

  • 上传人:a****
  • 文档编号:643336
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:24
  • 大小:528.09KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年度 北师大 八年 级数 上册 第一章 勾股定理 专题 练习 试卷 答案 详解
    资源描述:

    1、北师大版八年级数学上册第一章勾股定理专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,为边上一动点,于,于,为中点,则的最小值为().ABCD2、下面图形能够验证勾股定理的有()个A4个

    2、B3个C2个D1个3、我图古代数学著作九章算术中有这样一个问题:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?(注:丈、尺是长度单位,1丈=10尺 )意思为:如图,有一个边长为1丈的正方形水池,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的岸边,它的顶端恰好碰到池边的水面则这根芦苇的长度是()A5尺B10尺C12尺D13尺4、如图,由6个相同小正方形组成的网格中,A,B,C均在格点上,则ABC 的度数为()A45B50C55D605、有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形的两条直角边为边,向外各作一个正方

    3、形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是()A1B2020C2021D20226、如图,长方体的底面边长分别为2cm和3cm,高为6cm如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B,那么所用细线最短需要()A11cmB2cmC(8+2)cmD(7+3)cm7、如图所示的网格是正方形网格,A,B,C,D是网格线交点,则与的大小关系为()ABCD

    4、无法确定8、我国古代数学名著算法统宗有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地送行二步与人齐,5尺人高曾记,仕女家人争蹴良工高士素好奇,算出索长有几?”此问题可理解为:“如图,有一架秋千,当它静止时,踏板离地距离的长为尺,将它向前水平推送尺时,即尺,秋千踏板离地的距离和身高尺的人一样高,秋千的绳索始终拉得很直,试问绳索有多长?”,设秋千的绳索长为尺,根据题意可列方程为()ABCD9、如图,正方形ABCD中,AB12,将ADE沿AE对折至AEF,延长EF交BC于点G,G刚好是BC边的中点,则ED的长是()A2B3C4D510、如图,将ABC放在正方形网格图中(图中每个小正方形的边长均为

    5、1),点A,B,C恰好在网格图中的格点上,那么ABC中BC边上的高是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、附加题:观察以下几组勾股数,并寻找规律:3,4,5;5,12,13;7,24,25;9,40,41;请你写出有以上规律的第组勾股数:_2、某小区两面直立的墙壁之间为安全通道,一架梯子斜靠在左墙DE时,梯子A到左墙的距离AE为0.7m,梯子顶端D到地面的是样子离DE为2.4m,若梯子底端A保持不动,将梯子斜塞在右墙BC上,梯子顶端C到地面的距离CB为1.5m,则这两面直立墙壁之间的安全道的宽BE为_m3、等腰ABC中,AB=AC=10cm,BC=

    6、12cm,则BC边上的高是_cm4、九章算术中有一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐问水深,葭长各几何?”题意是:有一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B(如图)则芦苇长_尺5、如图,在RtABC中,ACB90,CDAB于D已知AB15,RtABC的周长为15+9,则CD的长为_三、解答题(5小题,每小题10分,共计50分)1、阅读与思考:请阅读下列材料,并完成相应的任务若直角三角形的三边的长都是正整数,则三边的长为“勾股数”构造

    7、勾股数,就是要寻找3个正整数,使它们满足“其中两个数的平方和(或平方差)等于第三个数的平方”通过观察常见勾股数“3,4,5”;“5,12,13”;“7,24,25”猜想当一组勾股数中(),最小数为奇数时,另两个正整数和满足比且,解得,任务:(1)请证明猜想成立,即证明,构成勾股数(2)若一组勾股数中,最小数为9,则另两个数分别是_和_2、如图所示,ABC的两条高AD,BE相交于点F,AC=BC(1)求证:ADCBEC(2)若CD=1,BE=2,求线段AC的长.3、已如:如图,四边形中,求四边形的面积4、算法统宗是中国古代数学名著,作者是我国明代数学家程大位在算法统宗中有一道“荡秋千”的问题:“

    8、平地秋千未起,踏板一尺离地送行二步与人齐,五尺人高曾记仕女佳人争蹴,终朝笑语欢嬉良工高士素好奇,算出索长有几”(注:1步5尺)译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,问绳索有多长”5、点P到y轴的距离与它到点A(-8,2)的距离都等于 13,求点P 的坐标。-参考答案-一、单选题1、D【解析】【分析】先根据矩形的判定得出AEPF是矩形,再根据矩形的性质得出EF,AP互相平分,且EF=AP,再根据垂线段最短的性质就可以得出APBC时,AP的值最小,即AM的值最小,根据面积关系建立等式求出其

    9、解即可【详解】解:如图,连接AP,AB=3,AC=4,BC=5,EAF=90,PEAB于E,PFAC于F,四边形AEPF是矩形,EF,AP互相平分且EF=AP,EF,AP的交点就是M点当AP的值最小时,AM的值就最小,当APBC时,AP的值最小,即AM的值最小APBC=ABAC,APBC=ABAC,AB=3,AC=4,BC=5,5AP=34,AP=,AM=故选:D【考点】本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,解题的关键是求出AP的最小值2、A【解析】【分析】分别计算图形的面积进行证明即可【详解】解:A、由可得,故该项的图形能够验证勾股定理;

    10、B、由可得,故该项的图形能够验证勾股定理;C、由可得,故该项的图形能够验证勾股定理;D、由可得,故该项的图形能够验证勾股定理;故选:A【考点】此题考查了图形与勾股定理的推导,熟记勾股定理的计算公式及各种图形面积的计算方法是解题的关键3、D【解析】【分析】依题意,芦苇的长度为直角三角形的斜边,水深为一直角边,另一直角边为5尺,由勾股定理即可列出方程,进而得到答案【详解】解:设水深x尺,则芦苇的长度为(x+1)尺,依题意,由勾股定理,得:,解得,所以芦苇的长度为13尺故选D【考点】本题考查勾股定理的应用,将题目描述问题转化成直角三角形求边长的问题是解题的关键4、A【解析】【分析】连接AC,利用勾股

    11、定理分别求出AB、AC、BC,根据勾股定理的逆定理得到ABC是等腰直角三角形,ACB=90,再根据三角形内角和定理得到答案【详解】连接AC,AC=BC,ABC是等腰直角三角形,ACB=90,ABC= (180-ACB)=45故选A【考点】本题考查了等腰三角形,勾股定理的逆定理,解决问题的关键是作辅助线构建三角形,熟练掌握等腰三角形的定义和性质,熟练运用勾股定理的逆定理判断直角三角形5、D【解析】【分析】根据题意可得每“生长”一次,面积和增加1,据此即可求得“生长”了2021次后形成的图形中所有的正方形的面积和【详解】解:如图,由题意得:SA=1,由勾股定理得:SBSC=1,则 “生长”了1次后

    12、形成的图形中所有的正方形的面积和为2,同理可得:“生长”了2次后形成的图形中所有的正方形面积和为3,“生长”了3次后形成的图形中所有正方形的面积和为4,“生长”了2021次后形成的图形中所有的正方形的面积和是2022,故选:D【考点】本题考查了勾股数规律问题,找到规律是解题的关键6、B【解析】【详解】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果解:将长方体展开,连接AB,则AB最短.AA=3+2+3+2=10cm,AB=6 cm,AB=cm.故选B.7、C【解析】【分析】根据每个小网格都为正方形,设每个网格为1,由勾股定理可以求出AD、AC、 CD的长,再

    13、由勾股定理的逆定理得到ACD为等腰直角三角形,同理可得ABC为等腰直角三角形,即BAC= DAC【详解】解:如图,设正方形每个网格的边长都为1,连接CD、BC,则,为等腰直角三角形,同理:,为等腰直角三角形,故选:C【考点】本题考查勾股定理的性质、勾股定理的逆定理以及等腰直角三角形的判定,解本题的关键要掌握勾股定理及逆定理的基本知识8、C【解析】【分析】根据勾股定理列方程即可得出结论【详解】解:由题意知:OC=x-(5-1),PC=10,OP=x,在RtOCP中,由勾股定理得:x-(5-1)2+102=x2即故选:C【考点】本题主要考查了勾股定理的应用,读懂题意是解题的关键9、C【解析】【分析

    14、】连接AG,证明ABGAFG,得到FGBG,ADE沿AE对折至AEF,则EFDE,设DEx,则EFx,EC12x,则RtEGC中根据勾股定理列方程可求出DE的值【详解】如图,连接AG,四边形ABCD是正方形,ABCD90,ABBCCDAD12ADE沿AE对折至AEF,EFDE,AFAD,AFAD,ABAD,AFAB,又AG是公共边,ABGAFG(HL),G刚好是BC边的中点,BGFG, 设DEx,则EFx,EC12x,在RtEGC中,根据勾股定理列方程:62(12x)2(x6)2解得:x4所以ED的长是4,答案选C【考点】本题考查了正方形和全等三角形的综合知识,根据勾股定理列方程是本题的解题关

    15、键10、A【解析】【详解】先用勾股定理耱出三角形的三边,再根据勾股定理的逆定理判断出ABC是直角三角形,最后设BC边上的高为h,利用三角形面积公式建立方程即可得出答案.解:由勾股定理得:, ,即ABC是直角三角形,设BC边上的高为h,则,.故选A.点睛:本题主要考查勾股理及其逆定理.借助网格利用勾股定理求边长,并用勾股定理的逆定理来判断三角形是否是直角三角形是解题的关键.二、填空题1、11,60,61【解析】【分析】由所给勾股数发现第一个数是奇数,且逐步递增2,知第5组第一个数是11,第二、第三个数相差为1,设第二个数为x,则第三个数为,由勾股定理得:,计算求解即可【详解】解:由所给勾股数发现

    16、第一个数是奇数,且逐步递增2,知第5组第一个数是11,第二、第三个数相差为1,设第二个数为x,则第三个数为,由勾股定理得:,解得x60,第5组数是:11、60、61故答案为:11、60、61【考点】本题考查了数字类规律,勾股定理等知识解题的关键在于推导规律2、2.7【解析】【分析】先根据勾股定理求出AD的长,同理可得出AB的长,进而可得出结论【详解】在RtACB中,ACB=90,AE=0.7米,DE=2.4米,AD2=0.72+2.42=6.25在RtABD中,ABC=90,BC=1.5米,AB2+BC2=AC2,AB2+1.52=6.25,AB2=4AB0,AB=2米BE=AE+AB=0.7

    17、+2=2.7米故答案为 2.7【考点】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图领会数形结合的思想的应用3、8【解析】【详解】如图,AD是BC边上的高线AB=AC=10cm,BC=12cm,BD=CD=6cm,在直角ABD中,由勾股定理得到:AD= = =(8cm)故答案为84、13【解析】【分析】将其转化为数学几何图形,如图所示,根据题意,可知BC5尺,设水深ACx尺,则芦苇长(x+1)尺,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长和水深【详解】解:设水深x尺,则芦

    18、苇长(x+1)尺,在RtCAB中,AC2+BC2AB2,即x2+52(x+1)2,解得:x12,x+113,故芦苇长13尺,故答案为:13【考点】本题考查勾股定理,和列方程解决实际问题,能够在实际问题中找到直角三角形并应用勾股定理是解决本题的关键5、6【解析】【分析】由已知条件得出ACBC9,由勾股定理得出AC2BC2AB2152225,求出ACBC90,由三角形面积即可得出答案【详解】解: RtABC的周长为159,ACB90,AB15,ACBC9,AC2BC2AB2152225,(ACBC)2(9)2,即AC22ACBCBC2405,2ACBC405225180,ACBC90,ABCDAC

    19、BC,CD6;故答案为:6【考点】本题考查了勾股定理,三角形的面积公式,完全平方公式,三角形的周长的计算,熟记直角三角形的性质是解题的关键三、解答题1、 (1)见解析(2)40;41【解析】【分析】(1)利用勾股定理的逆定理证明即可(2)利用勾股数的公式代入求值即可(1)证明:,构成勾股数.(2)根据最小数为奇数时,另两个正整数为,当a=9时,故答案为:40,41【考点】本题考查了勾股定理逆定理,勾股数的探索,代入求值,熟练掌握勾股数是解题的关键2、 (1)见解析(2)【解析】【分析】(1)由ADBC,BEAC得BEC=ADC=90,可证DAC=CBE,根据AAS可证ADCBEC;(2)由AD

    20、CBEC,得CD=CE=1,根据勾股定理可求(1)证明:ADBC,BEAC,BEC=ADC=90C+DAC=90=C+CBE,DAC=CBE在ADC和BEC中, ADCBEC(AAS);(2)解:ADCBEC,CD=CE=1,BC= ,AC=BC=【考点】本题考查了全等三角形的判定与性质,勾股定理,熟练掌握全等三角形的判定与性质是解题的关键3、【解析】【分析】利用勾股定理先求解 再利用勾股定理的逆定理证明 从而可得答案【详解】解:如图,连接AC, , 所以四边形ABCD的面积为:【考点】本题考查的是勾股定理与勾股定理的逆定理的应用,掌握“勾股定理与勾股定理的逆定理”是解本题的关键4、尺【解析】

    21、【分析】设秋千的绳索长为x尺,根据题意可得AB=(x-4)尺,利用勾股定理可得x2=102+(x-4)2,解之即可【详解】解:设秋千的绳索长为x尺,根据题意可列方程为:x2=102+(x-4)2,解得:x=,秋千的绳索长为尺【考点】此题主要考查了勾股定理的应用,关键是正确理解题意,表示出AB、AC的长,掌握直角三角形中两直角边的平方和等于斜边的平方5、或.【解析】【分析】由P到y轴的距离为13,可得P点横坐标为13或-13,设出P点坐标,然后利用两点间的距离公式建立方程求解即可.【详解】解:点P到y轴的距离为13,P点横坐标为13或-13当P点横坐标为13时,设P(13,a)由点P到点A(-8,2)的距离等于13得:整理得,无解,故此种情况不存在;当P点横坐标为-13时,设P(-13,a)同理可得整理得,解得或点P的坐标为或.【考点】本题考查直角坐标系中两点间的距离公式与解一元二次方程,熟练掌握公式建立方程是解题的关键.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度北师大版八年级数学上册第一章勾股定理专题练习试卷(含答案详解版).docx
    链接地址:https://www.ketangku.com/wenku/file-643336.html
    相关资源 更多
  • 专题01 原始社会的解体和阶级社会的演进(原卷版).docx专题01 原始社会的解体和阶级社会的演进(原卷版).docx
  • 专题01 单项选择(最新名校模拟题)-冲刺2022年高考英语终极题型押题(天津专用).docx专题01 单项选择(最新名校模拟题)-冲刺2022年高考英语终极题型押题(天津专用).docx
  • 专题01 单项选择考点汇聚-2022年江苏中考英语考前最后必看必提分资料(牛津译林版) .docx专题01 单项选择考点汇聚-2022年江苏中考英语考前最后必看必提分资料(牛津译林版) .docx
  • 专题01 单项选择专项练习 -2021-2022学年八年级英语下学期期中复习专项练习(江苏专用).docx专题01 单项选择专项练习 -2021-2022学年八年级英语下学期期中复习专项练习(江苏专用).docx
  • 专题01 单项选择100题(考点全囊括)-2022-2023学年八年级英语上学期期中考点大串讲(牛津深圳版).docx专题01 单项选择100题(考点全囊括)-2022-2023学年八年级英语上学期期中考点大串讲(牛津深圳版).docx
  • 专题01 单项选择100题(考点全囊括)-2022-2023学年九年级英语上学期期中考点大串讲(牛津译林版).docx专题01 单项选择100题(考点全囊括)-2022-2023学年九年级英语上学期期中考点大串讲(牛津译林版).docx
  • 专题01 单项选择100题(考点全囊括)-2022-2023学年九年级英语上学期期中考点大串讲(牛津深圳版).docx专题01 单项选择100题(考点全囊括)-2022-2023学年九年级英语上学期期中考点大串讲(牛津深圳版).docx
  • 专题01 单项选择100题(考点全囊括)-2021-2022学年七年级英语上学期期中复习挑战满分系列(仁爱版).docx专题01 单项选择100题(考点全囊括)-2021-2022学年七年级英语上学期期中复习挑战满分系列(仁爱版).docx
  • 专题01 单项选择100题(名校模拟 地区真题)-冲刺2023年中考英语必考题型终极预测(重庆专用).docx专题01 单项选择100题(名校模拟 地区真题)-冲刺2023年中考英语必考题型终极预测(重庆专用).docx
  • 专题01 单项选择100题(名校最新期末真题)-2022-2023学年八年级英语上学期期末复习查缺补漏冲刺满分(牛津上海版).docx专题01 单项选择100题(名校最新期末真题)-2022-2023学年八年级英语上学期期末复习查缺补漏冲刺满分(牛津上海版).docx
  • 专题01 单项选择100题(01)(名校最新期中真题)-2022-2023学年八年级英语下学期期中复习查缺补漏冲刺满分(仁爱版).docx专题01 单项选择100题(01)(名校最新期中真题)-2022-2023学年八年级英语下学期期中复习查缺补漏冲刺满分(仁爱版).docx
  • 专题01 单项选择100题【考题猜想】-2023-2024学年八年级英语上学期期末考点大串讲(人教版)(原卷版).docx专题01 单项选择100题【考题猜想】-2023-2024学年八年级英语上学期期末考点大串讲(人教版)(原卷版).docx
  • 专题01 单项选择100题-2023届九年级英语名校真题分类汇编(江苏专用).docx专题01 单项选择100题-2023届九年级英语名校真题分类汇编(江苏专用).docx
  • 专题01 单项选择100道(知识点全覆盖)-2021-2022学年八年级英语下学期期末复习查缺补漏冲刺满分(牛津译林版).docx专题01 单项选择100道(知识点全覆盖)-2021-2022学年八年级英语下学期期末复习查缺补漏冲刺满分(牛津译林版).docx
  • 专题01 单项选择100道(知识点全覆盖)-2021-2022学年八年级英语下学期期末复习查缺补漏冲刺满分(牛津上海版).docx专题01 单项选择100道(知识点全覆盖)-2021-2022学年八年级英语下学期期末复习查缺补漏冲刺满分(牛津上海版).docx
  • 专题01 单项选择100道(知识点全覆盖)-2021-2022学年七年级英语下学期期末复习查缺补漏冲刺满分(仁爱版).docx专题01 单项选择100道(知识点全覆盖)-2021-2022学年七年级英语下学期期末复习查缺补漏冲刺满分(仁爱版).docx
  • 专题01 单项选择100道(知识点全覆盖)-2021-2022学年七年级英语下学期期末复习查缺补漏冲刺满分(人教版).docx专题01 单项选择100道(知识点全覆盖)-2021-2022学年七年级英语下学期期末复习查缺补漏冲刺满分(人教版).docx
  • 专题01 单项选择100道(知识点全覆盖)-2021-2022学年七年级英语下学期期中复习查缺补漏冲刺满分(仁爱版).docx专题01 单项选择100道(知识点全覆盖)-2021-2022学年七年级英语下学期期中复习查缺补漏冲刺满分(仁爱版).docx
  • 专题01 单项选择-牛津译林版八年级英语第一学期期中专项复习.docx专题01 单项选择-牛津译林版八年级英语第一学期期中专项复习.docx
  • 专题01 单项选择-2022年江苏中考英语各大题型易错题及应对策略.docx专题01 单项选择-2022年江苏中考英语各大题型易错题及应对策略.docx
  • 专题01 单调性的几个等价命题-2022年高考数学优拔尖必刷压轴题(选择题、填空题)(新高考地区专用).docx专题01 单调性的几个等价命题-2022年高考数学优拔尖必刷压轴题(选择题、填空题)(新高考地区专用).docx
  • 专题01 单句语法填空100题(重点单词变形)-2022-2023学年高二英语上学期期末复习查缺补漏冲刺满分(外研版2019).docx专题01 单句语法填空100题(重点单词变形)-2022-2023学年高二英语上学期期末复习查缺补漏冲刺满分(外研版2019).docx
  • 专题01 单句语法填空100题(重点单词变形)-2022-2023学年高一英语上学期期末复习查缺补漏冲刺满分(人教版2019).docx专题01 单句语法填空100题(重点单词变形)-2022-2023学年高一英语上学期期末复习查缺补漏冲刺满分(人教版2019).docx
  • 专题01 单句语法填空100题(重点单词变形)-2022-2023学年高一英语上学期期中复习查缺补漏冲刺满分(牛津译林版2020).docx专题01 单句语法填空100题(重点单词变形)-2022-2023学年高一英语上学期期中复习查缺补漏冲刺满分(牛津译林版2020).docx
  • 专题01 单句语法填空100题(知识点全覆盖)-2022-2023学年高一英语上学期期中复习查缺补漏冲刺满分(外研版2019).docx专题01 单句语法填空100题(知识点全覆盖)-2022-2023学年高一英语上学期期中复习查缺补漏冲刺满分(外研版2019).docx
  • 专题01 化学物质及其变化-【口袋书】2023年高考化学必背知识手册.docx专题01 化学物质及其变化-【口袋书】2023年高考化学必背知识手册.docx
  • 专题01 化学实验抠细节-备战2022年中考化学必背手册(南京专用).docx专题01 化学实验抠细节-备战2022年中考化学必背手册(南京专用).docx
  • 专题01 化学反应的热效应(解析版).docx专题01 化学反应的热效应(解析版).docx
  • 专题01 化学反应的热效应(原卷版).docx专题01 化学反应的热效应(原卷版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1