分享
分享赚钱 收藏 举报 版权申诉 / 26

类型2022年人教版八年级数学上册第十二章全等三角形必考点解析试卷(含答案详解).docx

  • 上传人:a****
  • 文档编号:696727
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:26
  • 大小:573.75KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 年人教版 八年 级数 上册 第十二 全等 三角形 必考 解析 试卷 答案 详解
    资源描述:

    1、八年级数学上册第十二章全等三角形必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,在RtABC中,ABAC,D、E是斜边BC上的两点,且DAE45,将ADC绕点A按顺时针方向旋转90后得

    2、到AFB,连接EF,有下列结论:BEDC;BAFDAC;FAEDAE;BFDC其中正确的有()ABCD2、如图,已知ABCDCB添加一个条件后,可得ABCDCB,则在下列条件中,不能添加的是()AACDBBABDCCADDABDDCA3、如图,在中,D是上一点,于点E,连接,若,则等于()ABCD4、如图:,则此题可利用下列哪种方法来判定()AASABAASCHLD缺少条件,不可判定5、如图,在ABC和ABC中,ABCABC,AABC,则,满足关系()ABCD6、如图,BE90,ABDE,ACDF,则ABCDEF的理由是()ASASBASACAASDHL7、如图,ABC是边长为4的等边三角形,

    3、点P在AB上,过点P作PEAC,垂足为E,延长BC至点Q,使CQPA,连接PQ交AC于点D,则DE的长为()A1B1.8C2D2.58、如图,点在边上,则下列结论中一定成立的是()ABCD9、如图,在中,的平分线交于点D,DE/AB,交于点E,于点F,则下列结论错误的是()ABCD10、如图,要使,直接利用三角形全等的判定方法是AAASBSASCASADSSS第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将一张直角三角形纸片对折,使点B、C重合,折痕为DE,连接DC,若AC=6cm,ACB=90,B=30,则ADC的周长是_cm2、如图,已知ABCDBE,A36

    4、,B40,则AED的度数为 _3、如图,在ABC中,点D是AC的中点,分别以AB,BC为直角边向ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中ABMNBC90,连接MN,已知MN4,则BD_4、如图是教科书中的一个片段,由画图我们可以得到,判定这两个三角形全等的依据是 _(1)画;(2)分别以点,为圆心,线段,长为半径画弧,两弧相交于点;(3)连接线段,5、如图是由4个相同的小正方形组成的网格图,其中1+2=_三、解答题(5小题,每小题10分,共计50分)1、【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图,ABC中,若AB8,AC6,求BC边上的中线AD的取值范围小明在组

    5、内经过合作交流,得到了如下的解决方法:如图,延长AD到点E,使DEAD,连结BE请根据小明的方法思考:(1)由已知和作图能得到的理由是()ASSSBSASCAASDASA(2)AD的取值范围是()ABCD(3)【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中【问题解决】如图,AD是ABC的中线,BE交AC于点E,交AD于F,且AEEF求证:ACBF2、已知:如图,点A,D,C,B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:(1)AECBFD(2)DE=CF3、如图,在中,点D在线段BC上运动(D

    6、不与B、C重合),连接AD,作,DE交线段AC于E(1)点D从B向C运动时,逐渐变_(填“大”或“小”),但与的度数和始终是_度(2)当DC的长度是多少时,并说明理由4、某数学兴趣小组在一次活动中进行了探究试验活动,请你来加入【探究与发现】(1)如图1,AD是的中线,延长AD至点E,使,连接BE,证明:【理解与应用】(2)如图2,EP是的中线,若,设,则x的取值范围是_(3)如图3,AD是的中线,E、F分别在AB、AC上,且,求证:5、如图,已知AB=AD,AC=AE,BAE=DAC求证:C=E-参考答案-一、单选题1、C【解析】【分析】利用旋转性质可得ABFACD,根据全等三角形的性质一一判

    7、断即可【详解】解:ADC绕A顺时针旋转90后得到AFB,ABFACD,BAFCAD,AFAD,BFCD,故正确,EAFBAF+BAECAD+BAEBACDAE904545DAE故正确无法判断BECD,故错误,故选:C【考点】本题考查了旋转的性质:旋转前后两图形全等,解题的关键是熟练掌握基本知识,属于中考常考题型2、A【解析】【分析】先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项【详解】解:ABCDCB,BCBC,A、添加ACDB,不能得ABCDCB,符合题意;B、添加ABDC,利用SAS可得ABCDCB,不符合题意;C、添加AD,利用AAS可得ABCDC

    8、B,不符合题意;D、添加ABDDCA,ACBDBC,利用ASA可得ABCDCB,不符合题意;故选:A【考点】本题主要考查三角形全等的判定,熟练掌握判定方法是解题的关键3、C【解析】【分析】证明RtBCDRtBED(HL),由全等三角形的性质得出CD=DE,则可得出答案【详解】解:,在和中,cm,cm故选:C【考点】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键4、C【解析】【分析】根据全等三角形的判定定理直接求解【详解】解:在RtABC和RtDCB中, (HL),故选C【考点】本题考查了全等三角形的判定定理,牢记全等三角形的判定定理是解题的关键5、C【解析】【分析】

    9、根据,证得,=,再利用BC得到=,再根据三角形内角和定理即可得到结论.【详解】,,ACB=,=,BC,=,故选:C.【考点】此题考查旋转图形的性质,等腰三角形的性质,两直线平行内错角相等,三角形的内角和定理.6、D【解析】【详解】在RtABC与RtDEF中,RtABCRtDEF(HL),故选D7、C【解析】【分析】过作的平行线交于,通过证明,得,再由是等边三角形,即可得出【详解】解:过作的平行线交于,是等边三角形,是等边三角形,CQPA,在中和中,于,是等边三角形,故选:C【考点】本题主要考查了等边三角形的判定与性质,全等三角形的判定与性质,作辅助线构造全等三角形是解题的关键8、C【解析】【分

    10、析】根据全等三角形的性质可直接进行排除选项【详解】解:,AB=AD,BC=DE,AC=AE,B=ADE,C=E,ABD=ADB,故A、B、D都是错误的,C选项正确;故选C【考点】本题主要考查全等三角形的性质,熟练掌握全等三角形的性质是解题的关键9、A【解析】【分析】根据角平分线的性质得到CD=DF=3,故B正确;根据平行线的性质及角平分线得到AE=DE=5,故C正确;由此判断D正确;再证明BDFDEC,求出BF=CD=3,故A错误【详解】解:在中,的平分线交于点D,CD=DF=3,故B正确;DE=5,CE=4,DE/AB,ADE=DAF,CAD=BAD,CAD=ADE,AE=DE=5,故C正确

    11、;AC=AE+CE=9,故D正确;B=CDE,BFD=C=90,CD=DF,BDFDEC,BF=CD=3,故A错误;故选:A【考点】此题考查了角平分线的性质定理,平行线的性质,等边对等角证明角相等,全等三角形的判定及性质,熟记各知识点并综合应用是解题的关键10、B【解析】【分析】根据平行线性质得出ABD=CDB,再加上AB=DC,BD=DB,根据全等三角形的判定定理SAS即可推出ABDCDB,从而推出A=C,即可得出答案【详解】,在和中,故选B【考点】本题考查了平行线性质、全等三角形的判定与性质的应用,熟练掌握全等三角形的判定与性质定理是解题的关键.二、填空题1、18【解析】【分析】【详解】解

    12、:根据折叠前后角相等可知,B=DCB=30,ADC=ACD=60,AC=AD=DC=6,ADC的周长是18cm故答案为8.2、76或76度【解析】【分析】根据全等三角形的性质得到AD36,根据三角形的外角的性质即可得出答案【详解】解:ABCDBE,AD36,AED是BDE的外角,AEDB+D40+3676故答案为:76【考点】本题考查了全等三角形的性质及三角形外角的性质,掌握全等三角形的对应角相等是解题的关键3、2【解析】【分析】延长BD到E,使DE=BD,连接AE,证明ADECDB(SAS),可得AE=CB,EAD=BCD,再根据ABM和BCN是等腰直角三角形,证明MBNBAE,可得MN=B

    13、E,进而可得BD与MN的数量关系即可求解【详解】解:如图,延长BD到E,使DE=BD,连接AE,点D是AC的中点,AD=CD,在ADE和CDB中,ADECDB(SAS),AE=CB,EAD=BCD,ABM和BCN是等腰直角三角形,AB=BM,CB=NB,ABM=CBN=90,BN=AE,又MBN+ABC=360-90-90=180,BCA+BAC+ABC=180,MBN=BCA+BAC=EAD+BAC=BAE,在MBN和BAE中,MBNBAE(SAS),MN=BE,BE=2BD,MN=2BD又MN=4,BD=2,故答案为:2【考点】本题考查了全等三角形的判定与性质、等腰直角三角形,解决本题的关

    14、键是掌握全等三角形的判定与性质4、【解析】【分析】根据全等三角形的判定方法解决问题即可【详解】解:在和中,故答案为:【考点】本题考查了作图复杂作图,全等三角形的判定等知识,解题的关键是理解题意,灵活应用所学知识解决问题5、180或180度【解析】【分析】由全等三角形性质和邻补角定义可求得【详解】解:如图:根据题意得BC=DE,E=B=90,AB=AE,所以ABCAED,所以1=ACB又因为2+ACB=180,所以,2+1=180故答案为:180【考点】本题考核知识点全等三角形性质和邻补角定义三、解答题1、 (1)B(2)C(3)见解析【解析】【分析】(1)根据AD=DE,ADC=BDE,BD=

    15、DC推出ADC和EDB全等即可;(2)根据全等得出BE=AC=6,AE=2AD,由三角形三边关系定理得出8-62AD8+6,求出即可;(3)延长AD到M,使AD=DM,连接BM,根据SAS证ADCMDB,推出BM=AC,CAD=M,根据AE=EF,推出CAD=AFE=BFD,求出BFD=M,根据等腰三角形的性质求出即可(1)在ADC和EDB中,ADCEDB(SAS),故选B;(2)由(1)知:ADCEDB,BE=AC=6,AE=2AD,在ABE中,AB=8,由三角形三边关系定理得:8-62AD8+6,1AD7,故选:C(3)延长AD到点M,使ADDM,连接BMAD是ABC中线CDBD在ADC和

    16、MDB中BMAC(全等三角形的对应边相等)CADM(全等三角形的对应角相等)AEEF,CADAFE(等边对等角)AFEBFD,BFDM,BFBM(等角对等边)又BMAC,ACBF【考点】本题考查了三角形的中线,三角形的三边关系定理,等腰三角形性质和判定,全等三角形的性质和判定等知识点,主要考查学生运用定理进行推理的能力2、 (1)见解析(2)见解析【解析】【分析】(1)由线段的和差可得AC=BD,继而利用“SSS”即可求证结论;(2)由(1)可知A=B,继而利用“SAS”求证AEDBFC,根据全等三角形的性质即可求证结论(1)证明:AD=BC,AD+DC=BC+DC,即AC=BD,在AEC和B

    17、FD中,AECBFD(SSS),(2)由(1)可知AECBFD,A=B,在AED和BFC中,,AEDBFC(SAS),DE=CF【考点】本题考查了全等三角形的判定及其性质,解题的关键是能够根据已知条件和隐藏条件正确选择全等三角形的判定方法3、 (1)小;140(2)当DC=2时,ABDDCE,理由见解析【解析】【分析】(1)利用三角形的内角和即可得出结论;(2)当DC=2时,利用DEC+EDC=140,ADB+EDC=140,求出ADB=DEC,再利用AB=DC=2,即可得出ABDDCE(1)在ABD中,B+BAD+ADB=180,设BAD=x,BDA=y,40+x+y=180,y=140-x

    18、(0x100),当点D从点B向C运动时,x增大,y减小,+=180-故答案为:小,140;(2)当DC=2时,ABDDCE,理由:C=40,DEC+EDC=140,又ADE=40,ADB+EDC=140,ADB=DEC,又AB=DC=2, 在ABD和DCE中,ABDDCE(AAS);【考点】此题主要考查学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质等知识点的理解和掌握,三角形的内角和公式,解本题的关键是分类讨论4、(1)见解析;(2);(3)见解析【解析】【分析】(1)根据全等三角形的判定即可得到结论;(2)延长至点,使,连接,根据全等三角形的性质得到,根据三角形的三边

    19、关系即可得到结论;(3)延长FD至G,使得,连接BG,EG,结合前面的做题思路,利用三角形三边关系判断即可【详解】(1)证明:,(2);如图,延长至点,使,连接,在与中,在中,即,的取值范围是;故答案为:;(3)延长FD至G,使得,连接BG,EG,在和中,在和中,在中,两边之和大于第三边,又,【考点】本题考查了全等三角形的判定和性质,三角形的中线的定义,三角形的三边关系,正确的作出图形是解题的关键5、见解析.【解析】【分析】由BAE=DAC可得到BAC=DAE,再根据“SAS”可判断ABCADE,根据全等的性质即可得到C=E【详解】BAE=DAC,BAECAE=DACCAE,即BAC=DAE,在ABC和ADE中,ABCADE(SAS),C=E【考点】本题考查了全等三角形的判定与性质:判断三角形全等的方法有“SSS”、“ SAS”、“ ASA”、“AAS”;全等三角形的对应角相等,对应边相等

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年人教版八年级数学上册第十二章全等三角形必考点解析试卷(含答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-696727.html
    相关资源 更多
  • 任命后个人表态发言4篇 任命后个人表态发言三篇 任命后个人表态发言稿 任命后个人表态发言.docx任命后个人表态发言4篇 任命后个人表态发言三篇 任命后个人表态发言稿 任命后个人表态发言.docx
  • 任命后个人表态发言.docx任命后个人表态发言.docx
  • 任务阅读(阅读还原)期末复习专项练习10篇-2022-2023学年人教版英语九年级上册.docx任务阅读(阅读还原)期末复习专项练习10篇-2022-2023学年人教版英语九年级上册.docx
  • 任务阅读(阅读还原)期中复习专项练习10篇-2022-2023学年人教版英语七年级上册.docx任务阅读(阅读还原)期中复习专项练习10篇-2022-2023学年人教版英语七年级上册.docx
  • 任务阅读(阅读填空)期末复习专项练习10篇-2021-2022学年牛津译林英语七年级下册.docx任务阅读(阅读填空)期末复习专项练习10篇-2021-2022学年牛津译林英语七年级下册.docx
  • 任务突破练7 赏析环境——明辨类型,关注效果.docx任务突破练7 赏析环境——明辨类型,关注效果.docx
  • 任务突破练2 论证分析——关注论据判定,辨清论证思路.docx任务突破练2 论证分析——关注论据判定,辨清论证思路.docx
  • 任务突破练21 语用中的常备考点.docx任务突破练21 语用中的常备考点.docx
  • 任务突破练20 情境化的语言表达题.docx任务突破练20 情境化的语言表达题.docx
  • 任务突破练12 文言文选择题.docx任务突破练12 文言文选择题.docx
  • 任务三 尝试创作.docx任务三 尝试创作.docx
  • 任前集体廉政谈话会讲话提纲10篇.docx任前集体廉政谈话会讲话提纲10篇.docx
  • 任前廉政谈话表态发言最新.docx任前廉政谈话表态发言最新.docx
  • 价值量和社会劳动生产率题型专项讲练(以近三年高考真题为例).docx价值量和社会劳动生产率题型专项讲练(以近三年高考真题为例).docx
  • 仰望星空与脚踏实地.docx仰望星空与脚踏实地.docx
  • 仰望大树.docx仰望大树.docx
  • 仪表联锁系统管理制度.docx仪表联锁系统管理制度.docx
  • 仪表联锁系统管理.docx仪表联锁系统管理.docx
  • 仪表维护管理制度.docx仪表维护管理制度.docx
  • 仪表电工岗位操作规程.docx仪表电工岗位操作规程.docx
  • 仪表公司消防应急预案.docx仪表公司消防应急预案.docx
  • 仪控部岗位责任制.docx仪控部岗位责任制.docx
  • 仪器——2022年浙江省杭州市中考科学.docx仪器——2022年浙江省杭州市中考科学.docx
  • 以项目实践谈建筑施工项目的安全生产管理.docx以项目实践谈建筑施工项目的安全生产管理.docx
  • 以车抵押借款合同 .docx以车抵押借款合同 .docx
  • 以质量安全为核心 强化现场标准化管理.docx以质量安全为核心 强化现场标准化管理.docx
  • 以积极向上的态度涵养高尚师德.docx以积极向上的态度涵养高尚师德.docx
  • 以科学发展观指导铁路安全管理创新.docx以科学发展观指导铁路安全管理创新.docx
  • 以社会组织参与基层社会治理为主题的代表约见活动领导讲话.docx以社会组织参与基层社会治理为主题的代表约见活动领导讲话.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1