2022年北师大版八年级数学上册第一章勾股定理专题练习试题(含解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 北师大 八年 级数 上册 第一章 勾股定理 专题 练习 试题 解析
- 资源描述:
-
1、北师大版八年级数学上册第一章勾股定理专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1 m,当它把绳子的下端拉开4 m后,发现下端刚好接触地面
2、,则旗杆的高为()A7 mB7.5 mC8 mD9 m2、有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是()A1B2020C2021D20223、九章算术是我国古代数学名著,记载着这样一个问题:“今有池方一丈,葭生其中央,出水一尺引葭赴岸,
3、适与岸齐问水深、葭长各几何?”大意是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面水的深度与这根芦苇的长度分别是多少?设芦苇的长度为x尺,则可列方程为()Ax2+52(x+1)2Bx2+102(x+1)2Cx252(x1)2Dx2102(x1)24、在ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A10B8C6或10D8或105、如图,在矩形ABCD中,AB4,BC6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内的点F处,连接CF,则CF的长为()ABCD6、
4、如图,在ABC中,AB6,AC9,ADBC于D,M为AD上任一点,则MC2MB2等于()A29B32C36D457、勾股定理是人类最伟大的科学发现之一,在我国古算书周髀算经中早有记载如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A直角三角形的面积B最大正方形的面积C较小两个正方形重叠部分的面积D最大正方形与直角三角形的面积和8、如图,长方体的底面边长分别为2cm和3cm,高为6cm如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B,那么所用细线最短需要()A11cmB2cmC(8+2)cmD(
5、7+3)cm9、如图,OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且ABx轴,若AB=6,OA=OB=5,则点A的坐标是()ABCD10、在中,的对边分别是a,b,c,若,则的面积是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若ABC中,cm,cm,高cm,则BC的长为_cm2、在ABC中,AD是BC边上的中线,ADAB,如果AC=5,AD=2,那么AB的长是_3、我国古代数学著作九章算术中的一个问题:一根竹子高 1 丈(1 丈=10 尺),折断后顶端落在离竹子底端 3 尺处,问折断处离地面的高度为多少尺?如图,设折断处离地面的高度为 x 尺
6、,根据题意,可列出关于 x 方程为:_. 4、我国古代九章算术中有数学发展史上著名的“葭生池中”问题:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问:葭长几何?(1丈10尺)意思是:有一个长方体池子,底面是边长为1丈的正方形,中间有芦苇,把高出水面1尺的芦苇拉向池边(芦苇没有折断),刚好贴在池边上,问:芦苇长多少尺?答:芦苇长_尺5、如图,在高2米,坡角为30的楼梯表面铺地毯,地毯的长至少需_米三、解答题(5小题,每小题10分,共计50分)1、如图,小明家在一条东西走向的公路北侧米的点处,小红家位于小明家北米(米)、东米(米)点处(1)求小明家离小红家的距离;(2)现要在公路上的点
7、处建一个快递驿站,使最小,请确定点的位置,并求的最小值2、如图,在ABC中,C=90,M是BC的中点,MDAB于D,求证:.3、如图,两个工厂位于一段直线形河道的异侧,工厂至河道的距离为,工厂至河道的距离为,经测量河道上、两地间的距离为,现准备在河边某处(河宽不计)修一个污水处理厂(1)设,请用的代数式表示的长_;(结果保留根号)(2)为了使,两厂到污水处理厂的排污管道之和最短,请在图中画出污水厂位置,并求出排污管道最短长度?(3)通过以上的解答,充分展开联想,运用数形结合思想,请你求出的最小值为多少?4、如图,某商家想在商场大楼上悬挂一块广告牌,广告牌高根据商场规定广告牌最高点不得高于地面2
8、0m,经测量,测角仪支架高,在F处测得广告牌底部点B的仰角为30,在E处测得标语牌顶部点A的仰角为45,请计算说明,商家这样放广告牌是否符合规定?(图中点A,B,C,D,E,F,G,H在同一平面内)5、一个25米长的梯子,斜靠在一竖直的墙上,这时的距离为24米,如果梯子的顶端A沿墙下滑4米,那么梯子底端B外移多少米?-参考答案-一、单选题1、B【解析】【分析】根据题意,画出图形,设旗杆AB=x米,则AC=(x+1)米,在RtABC中,根据勾股定理的方程(x+1)2=x2+42,解方程求得x的值即可.【详解】如图所示:设旗杆AB=x米,则AC=(x+1)米,在RtABC中,AC2=AB2+BC2
9、,即(x+1)2=x2+42,解得:x=7.5故选B【考点】本题考查了勾股定理的应用,解决本题的基本思路是是画出示意图,利用勾股定理列方程求解2、D【解析】【分析】根据题意可得每“生长”一次,面积和增加1,据此即可求得“生长”了2021次后形成的图形中所有的正方形的面积和【详解】解:如图,由题意得:SA=1,由勾股定理得:SBSC=1,则 “生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得:“生长”了2次后形成的图形中所有的正方形面积和为3,“生长”了3次后形成的图形中所有正方形的面积和为4,“生长”了2021次后形成的图形中所有的正方形的面积和是2022,故选:D【考点】本题考查
10、了勾股数规律问题,找到规律是解题的关键3、C【解析】【分析】首先设芦苇长x尺,则水深为(x1)尺,根据勾股定理可得方程(x1)252x2【详解】解:设芦苇长x尺,由题意得:(x1)252x2,即x252(x1)2故选:C【考点】此题主要考查了勾股定理的应用,解题的关键是读懂题意,从题中抽象出勾股定理这一数学模型4、C【解析】【详解】分两种情况:在图中,由勾股定理,得;BCBDCD8210.在图中,由勾股定理,得;BCBDCD826.故选C.5、C【解析】【分析】连接BF,(见详解图),由翻折变换可知,BFAE,BE=EF,由点E是BC的中点,可知BE=3,根据勾股定理即可求得AE;根据三角形的
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
