分享
分享赚钱 收藏 举报 版权申诉 / 25

类型2022年综合复习人教版九年级数学上册期末专题攻克试题 (A)卷(含答案解析).docx

  • 上传人:a****
  • 文档编号:709417
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:25
  • 大小:558.51KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年综合复习人教版九年级数学上册期末专题攻克试题 A卷含答案解析 2022 综合 复习 人教版 九年级 数学 上册 期末 专题 攻克 试题 答案 解析
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末专题攻克试题 (A)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、若点P(2,)与点Q(,)关于原点对称,则mn的值分别为()AB

    2、C1D52、正方形的边长为4,若边长增加x,那么面积增加y,则y关于x的函数表达式为()ABCD3、如图,在中,为的直径,和相切于点E,和相交于点F,已知,则的长为()ABCD24、已知关于x的一元二次方程x23x+10有两个不相等的实数根x1,x2,则x12+x22的值是()A7B7C2D25、如图,在等腰RtABC中,ACBC,点P在以斜边AB为直径的半圆上,M为PC的中点当点P沿半圆从点A运动至点B时,点M运动的路径长是()ABCD2二、多选题(5小题,每小题4分,共计20分)1、在图所示的4个图案中不包含图形的旋转的是()ABCD2、如图,在ABC中,ABBC,将ABC绕点B顺时针旋转

    3、a度,得到A1BC1,A1B交AC于点E,A1C1分别交AC,BC于点D,F,下列结论:其中正确的有()ACDFa度BA1ECFCDFFCDBEBF3、如图,AB为的直径,BC交于点D,AC交于点E,下列结论正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 ABCD劣弧是劣弧的2倍4、以图(以点O为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换能得到图的有()A只要向右平移1个单位B先以直线为对称轴进行翻折,再向右平移1个单位C先绕着点O旋转,再向右平移1个单位D绕着的中点旋转即可5、下列命题正确的是()A菱形既是中心对称图形又是轴对称图形B的算术平方根是5C如果一个多边形

    4、的各个内角都等于108,则这个多边形是正五边形D如果方程有实数根,则实数第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、已知二次函数,当x_时,y取得最小值2、如图,已知P是函数y1图象上的动点,当点P在x轴上方时,作PHx轴于点H,连接PO小华用几何画板软件对PO,PH的数量关系进行了探讨,发现POPH是个定值,则这个定值为 _3、若m,n是关于x的方程x2-3x-30的两根,则代数式m2+n2-2mn_4、抛物线的图象和轴有交点,则的取值范围是_5、抛物线是二次函数,则m=_四、解答题(5小题,每小题8分,共计40分)1、已知关于的一元二次方程(1)求证:方程总有两

    5、个实数根;(2)若方程的两个实数根都为正整数,求这个方程的根2、如图,二次函数的图象交轴于、两点,交轴于点,点的坐标为,顶点的坐标为 线 封 密 内 号学级年名姓 线 封 密 外 求二次函数的解析式和直线的解析式;点是直线上的一个动点,过点作轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;在抛物线上是否存在异于、的点,使中边上的高为?若存在求出点的坐标;若不存在请说明理由3、已知x1,x2是关于x的一元二次方程x2-4mx+4m2-90的两实数根(1)若这个方程有一个根为-1,求m的值;(2)若这个方程的一个根大于-1,另一个根小于-1,求m的取值范围;(3)已知RtABC的一边

    6、长为7,x1,x2恰好是此三角形的另外两边的边长,求m的值4、已知关于的一元二次方程有实数根.(1)求的取值范围.(2)若该方程的两个实数根为、,且,求的值.5、小敏与小霞两位同学解方程的过程如下框:小敏:两边同除以,得,则小霞:移项,得,提取公因式,得则或,解得,你认为他们的解法是否正确?若正确请在框内打“”;若错误请在框内打“”,并写出你的解答过程-参考答案-一、单选题1、B【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数解答【详解】解:P(2,-n)与点Q(-m,-3)关于原点对称,2=-(-m),-n=-(-3),m=2,n=-3, 故选:B【考点】本题考查了关于原点对

    7、称的点的坐标,解决本题的关键是掌握好对称点的坐标规律2、C 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】加的面积=新正方形的面积-原正方形的面积,把相关数值代入化简即可【详解】解:新正方形的边长为x+4,原正方形的边长为4,新正方形的面积为(x+4)2,原正方形的面积为16,y=(x+4)2-16=x2+8x,故选:C【考点】本题考查列二次函数关系式;得到增加的面积的等量关系是解决本题的关键3、C【解析】【分析】首先求出圆心角EOF的度数,再根据弧长公式,即可解决问题【详解】解:如图连接OE、OF,CD是O的切线,OECD,OED=90,四边形ABCD是平行四边形,C=60,

    8、A=C=60,D=120,OA=OF,A=OFA=60,DFO=120,EOF=360-D-DFO-DEO=30,的长故选:C【考点】本题考查切线的性质、平行四边形的性质、弧长公式等知识,解题的关键是求出圆心角的度数,记住弧长公式4、B【解析】【分析】根据一元二次方程的根与系数的关系可得x1+x23,x1x21,再把代数式x12+x22化为,再整体代入求值即可.【详解】解:根据根与系数的关系得x1+x23,x1x21,所以x12+x22(x1+x2)22x1x232217故选:B【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查的是一元二次方程的根与系数的关系,熟练的利用根与系数

    9、的关系求解代数式的值是解本题的关键.5、B【解析】【分析】取AB的中点O、AC的中点E、BC的中点F,连接OC、OP、OM、OE、OF、EF,如图,利用勾股定理得到AB的长,进而可求出OC,OP的长,求得CMO=90,于是得到点M在以OC为直径的圆上,然后根据圆的周长公式计算点M运动的路径长【详解】解:取AB的中点O、AC的中点E、BC的中点F,连接OC、OP、OM、OE、OF、EF,如图,在等腰RtABC中,AC=BC=2,AB=BC=4,OC=OP=AB=2,ACB=90,C在O上,M为PC的中点,OMPC,CMO=90,点M在以OC为直径的圆上,P点在A点时,M点在E点;P点在B点时,M

    10、点在F点O是AB中点,E是AC中点,OE是ABC的中位线,OE/BC,OE=BC=,OEAC,同理OFBC,OF=,四边形CEOF是矩形,OE=OF,四边形CEOF为正方形,EF=OC=2,M点的路径为以EF为直径的半圆,点M运动的路径长=2=故选:B【考点】本题考查了等腰三角形的性质,勾股定理,正方形的判定与性质,圆周角定理,以及动点的轨迹:点按一定规律运动所形成的图形为点运动的轨迹解决此题的关键是利用圆周角定理确定M点的轨迹为以EF为直径的半圆二、多选题1、AC【解析】【分析】根据中心对称与轴对称的概念,即可求解【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:A、是轴对称图形,

    11、故本选项符合题意;B、是中心对称图形,属于图形的旋转,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、既是轴对称图形,也是中心对称图形,包含图形的旋转,故本选项不符合题意;故选:AC【考点】本题主要考查了中心对称与轴对称的概念,熟练掌握轴对称图形的关键是寻找对称轴,图象沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合是解题的关键2、ABD【解析】【分析】根据等腰三角形的性质由BABC得AC,再根据旋转的性质得BABA1BCBC1,ABA1CBC1,AA1CC1,而根据对顶角相等得BFC1DFC,于是可根据三角形内角和定理得到CDFFBC1;利用“ASA

    12、”证明BAEBC1F,则BEBF,所以A1ECF;由于CDF,则只有当旋转角等于C时才有DFFC【详解】解:BABC,AC,ABC绕点B顺时针旋转度,得到A1BC1,BABA1,BCBC1,ABA1CBC1,AA1CC1,BFC1DFC,CDFFBC1,所以A正确,BABA1BCBC1,在BAE和BC1F中,BAEBC1F(ASA),BEBF,故D正确而BA1BC,A1ECF,所以B正确;CDF,当旋转角等于C时,DFFC,所以C错误;故选ABD【考点】本题主要考查了旋转的性质,全等三角形的性质与判定,等腰三角形的性质,三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.3、ABD【

    13、解析】【分析】根据圆周角定理,等边对等角,等腰三角形的性质,直径所对圆周角是直角等知识即可解答【详解】如图,连接,, 线 封 密 内 号学级年名姓 线 封 密 外 是的直径,又中,点D是的中点,即,故选项正确;由选项可知是的平分线,由圆周角定理知,故选项正确;是的直径,即,故选项错误;,在中,劣弧是劣弧的2倍,故选项正确综上所述,正确的结论是:故选:【考点】本题考查了圆周角定理,等边对等角,等腰直角三角形的判定和性质,直径所对圆周角是直角等知识,解题关键是求出相应角的度数4、BCD【解析】【分析】观察两个半圆的位置关系,再确定能否通过图象变换得到,以及旋转、平移的方法【详解】解:由图可知,图(

    14、1)先以直线AB为对称轴进行翻折,再向右平移1个单位,或先绕着点O旋转180,再向右平移1个单位,或绕着OB的中点旋转180即可得到图(2)故选BCD【考点】本题考查了旋转、轴对称、平移的性质关键是根据变换图形的位置关系,确定变换规律 线 封 密 内 号学级年名姓 线 封 密 外 5、AD【解析】【分析】利用菱形的对称性、算术平方根的定义、多边形的内角和、一元二次方程根的判别式等知识分别判断后即可确定正确的选项【详解】解:A、菱形既是中心对称图形又是轴对称图形,故命题正确,符合题意;B、的算术平方根是,故命题错误,不符合题意;C、若一个多边形的各内角都等于108,各边也相等,则它是正五边形,故

    15、命题错误,不符合题意;D、对于方程,当a0时,方程,变为2x10,有实数根,当a0时,时,即,方程有实数根,综上所述,方程有实数根,则实数,故命题正确,符合题意故选:AD【考点】考查了命题与定理的知识,解题的关键是了解算术平方根的定义、菱形的对称性、多边形的内角和、一元二次方程根的判别式等知识,难度不大三、填空题1、1【解析】【分析】根据抛物线的顶点坐标和开口方向即可得出答案【详解】解:,该抛物线的顶点坐标为,且开口方向向上,当时,取得最小值,故答案为:1【考点】本题考查二次函数的最值,求二次函数最大值或最小值有三种方法:第一种可有图象直接得出,第二种是配方法,第三种是公式法2、2【解析】【分

    16、析】设p(x,x2-1),则OH=|x|,PH=|x2-1|,因点P在x轴上方,所以x2-10,由勾股定理求得OP=x2+1,即可求得OP-PH=2,得出答案【详解】解:设p(x,x2-1),则OH=|x|,PH=|x2-1|,当点P在x轴上方时,x2-10,PH=|x2-1|=x2-1,在RtOHP中,由勾股定理,得OP2=OH2+PH2=x2+(x2-1)2=(x2+1)2,OP=x2+1, 线 封 密 内 号学级年名姓 线 封 密 外 OP-PH=(x2+1)-(x2-1)=2,故答案为:2【考点】本题考查二次函数图象上点的坐标特征,勾股定理,利用坐标求线段长度是解题的关键3、21【解析

    17、】【分析】先根据根与系数的关系得到m+n3,mn3,再根据完全平方公式变形得到m2+n22mn(m+n)24mn,然后利用整体代入的方法计算【详解】解:m,n是关于x的方程x2-3x-30的两根,m+n3,mn3,m2+n22mn(m+n)24mn324(3)21故答案为:21【考点】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c0(a0)的两根时,x1+x2,x1x24、且【解析】【分析】由题意知,计算求解即可【详解】解:由题意知,解得故答案为:且【考点】本题考查了二次函数与轴的交点个数解题的关键在于熟练掌握二次函数与轴的交点个数5、3【解析】【分析】根据二次函数的定义

    18、:一般地,形如(a、b、c是常数且a0)的函数叫做二次函数,进行求解即可【详解】解:抛物线是二次函数,故答案为:3【考点】本题主要考查了二次函数的定义,解题的关键在于能够熟知二次函数的定义四、解答题1、证明见祥解; 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】(1)先求出判别式,再配方变为即可;(2)用十字相乘法可以求出根的表达式,方程的两个实数根都为正整数,列不等式组,即可得出m的值【详解】证明:是关于的一元二次方程,此方程总有两个实数根解:,方程的两个实数根都为正整数,解得,【考点】本题考查了根的判别式,配方为平方式,根据方程的两个实数根都为正整数,列出不等式组,求出是解

    19、题的关键2、1y=-x2+2x+3,y=-x+3; 有最大值; 存在满足条件的点,其坐标为或【解析】【分析】可设抛物线解析式为顶点式,由点坐标可求得抛物线的解析式,则可求得点坐标,利用待定系数法可求得直线解析式;设出点坐标,从而可表示出的长度,利用二次函数的性质可求得其最大值;过作轴,交于点,过和于,可设出点坐标,表示出的长度,由条件可证得为等腰直角三角形,则可得到关于点坐标的方程,可求得点坐标【详解】解:抛物线的顶点的坐标为,可设抛物线解析式为,点在该抛物线的图象上,解得,抛物线解析式为,即,点在轴上,令可得,点坐标为,可设直线解析式为, 线 封 密 内 号学级年名姓 线 封 密 外 把点坐

    20、标代入可得,解得,直线解析式为;设点横坐标为,则,当时,有最大值;如图,过作轴交于点,交轴于点,作于,设,则,是等腰直角三角形,当中边上的高为时,即,当时,方程无实数根,当时,解得或,或,综上可知存在满足条件的点,其坐标为或【考点】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、等腰直角三角形的性质及方程思想等知识在中主要是待定系数法的考查,注意抛物线顶点式的应用,在中用点坐标表示出的长是解题的关键,在中构造等腰直角三角形求得的长是解题的关键本题考查知识点较多,综合性较强,难度适中3、 (1)m的值为1或-2(2)-2m1(3)m或m【解析】【分析】(1)把x=-1代入方程,列出m的

    21、一元二次方程,求出m的值;(2)首先用m表示出方程的两根,然后列出m的不等式组,求出m的取值范围;(3)首先用m表示出方程的两根,分直角ABC的斜边长为7或2m+3,根据勾股定理求出m的值.(1)解:x1,x2是一元二次方程x2-4mx+4m2-90的两实数根,这个方程有一个根为-1,将x-1代入方程x2-4mx+4m2-90,得1+4m+4m2-90 线 封 密 内 号学级年名姓 线 封 密 外 解得m1或m-2m的值为1或-2(2)解:x2-4mx+4m29,(x-2m)29,即x-2m3x12m+3,x22m-32m+32m-3,解得-2m1m的取值范围是-2m1(3)解:由(2)可知方

    22、程x2-4mx+4m2-90的两根分别为2m+3,2m-3若RtABC的斜边长为7,则有49(2m+3)2+(2m-3)2解得m边长必须是正数,m若斜边为2m+3,则(2m+3)2(2m-3)2+72解得m综上所述,m或m【考点】本题主要考查了根的判别式与根与系数的关系的知识,解答本题的关键是熟练掌握根与系数关系以及根的判别式的知识,此题难度一般.4、(1).(2).【解析】【分析】(1)根据方程的系数结合根的判别式0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;(2)由根与系数的关系可得出x1+x2=6,x1x2=4m+1,结合|x1-x2|=4可得出关于m的一元一次方程,解之

    23、即可得出m的值【详解】(1)关于x的一元二次方程x2-6x+(4m+1)=0有实数根,=(-6)2-41(4m+1)0,解得:m2;(2)方程x2-6x+(4m+1)=0的两个实数根为x1、x2,x1+x2=6,x1x2=4m+1,(x1-x2)2=(x1+x2)2-4x1x2=42,即32-16m=16,解得:m=1【考点】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当0时,方程有实数根”;(2)利用根与系数的关系结合|x1-x2|=4,找出关于m的一元一次方程5、两位同学的解法都错误,正确过程见解析【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据因式分解法解一元二次方程【详解】解:小敏:两边同除以,得,则()小霞:移项,得,提取公因式,得则或,解得,()正确解答:移项,得,提取公因式,得,去括号,得,则或,解得,【考点】本题考查因式分解法解一元二次方程,掌握因式分解的技巧准确计算是解题关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年综合复习人教版九年级数学上册期末专题攻克试题 (A)卷(含答案解析).docx
    链接地址:https://www.ketangku.com/wenku/file-709417.html
    相关资源 更多
  • 人教版九年级上册 第六单元 碳和碳的氧化物 评价五(无答案).docx人教版九年级上册 第六单元 碳和碳的氧化物 评价五(无答案).docx
  • 人教版九年级上册 第六单元 碳和碳的氧化物 评价二(无答案).docx人教版九年级上册 第六单元 碳和碳的氧化物 评价二(无答案).docx
  • 人教版九年级上册 第六单元 实验活动2二氧化碳的实验室制取与性质实验报告.docx人教版九年级上册 第六单元 实验活动2二氧化碳的实验室制取与性质实验报告.docx
  • 人教版九年级上册 第五单元 课题3 化学方程式的计算 课上快练(无答案).docx人教版九年级上册 第五单元 课题3 化学方程式的计算 课上快练(无答案).docx
  • 人教版九年级上册 第五单元 课题1 如何理解化学变化教学设计.docx人教版九年级上册 第五单元 课题1 如何理解化学变化教学设计.docx
  • 人教版九年级上册 第五单元 化学方程式 课题2 如何正确书写化学方程式 导学案.docx人教版九年级上册 第五单元 化学方程式 课题2 如何正确书写化学方程式 导学案.docx
  • 人教版九年级上册 第二单元:我们周围的空气 单元测试题.docx人教版九年级上册 第二单元:我们周围的空气 单元测试题.docx
  • 人教版九年级上册 第二单元我们周围的空气 课题2 氧气 知识点归纳.docx人教版九年级上册 第二单元我们周围的空气 课题2 氧气 知识点归纳.docx
  • 人教版九年级上册 第二单元我们周围的空气 课题1 空气 知识点归纳.docx人教版九年级上册 第二单元我们周围的空气 课题1 空气 知识点归纳.docx
  • 人教版九年级上册 第二单元 课题3 制取氧气——高锰酸钾制取氧气 说课稿.docx人教版九年级上册 第二单元 课题3 制取氧气——高锰酸钾制取氧气 说课稿.docx
  • 人教版九年级上册 第二单元 课题3 制取氧气 第2课时 学案(无答案).docx人教版九年级上册 第二单元 课题3 制取氧气 第2课时 学案(无答案).docx
  • 人教版九年级上册 第二单元 课题3 制取氧气 第2课时 习题(附答案).docx人教版九年级上册 第二单元 课题3 制取氧气 第2课时 习题(附答案).docx
  • 人教版九年级上册 第二单元 课题2.1 空气 教学设计.docx人教版九年级上册 第二单元 课题2.1 空气 教学设计.docx
  • 人教版九年级上册 第二单元 课题2.1 空气 教学设计.docx人教版九年级上册 第二单元 课题2.1 空气 教学设计.docx
  • 人教版九年级上册 第二单元 课题1空气 导学案(无答案).docx人教版九年级上册 第二单元 课题1空气 导学案(无答案).docx
  • 人教版九年级上册 第二单元 我们周围的空气 课题2 氧气 导学案(有答案).docx人教版九年级上册 第二单元 我们周围的空气 课题2 氧气 导学案(有答案).docx
  • 人教版九年级上册 第二单元 我们周围的空气 知识要点(无答案).docx人教版九年级上册 第二单元 我们周围的空气 知识要点(无答案).docx
  • 人教版九年级上册 第二单元 我们周围的空气 实验活动1 氧气的实验室制取与性质 导学案.docx人教版九年级上册 第二单元 我们周围的空气 实验活动1 氧气的实验室制取与性质 导学案.docx
  • 人教版九年级上册 第二单元 实验活动1氧气的实验室制取与性质 实验报告.docx人教版九年级上册 第二单元 实验活动1氧气的实验室制取与性质 实验报告.docx
  • 人教版九年级上册 第二单元 培优训练(无答案).docx人教版九年级上册 第二单元 培优训练(无答案).docx
  • 人教版九年级上册 第二单元我们周围的空气 课题2 氧气 知识点归纳.docx人教版九年级上册 第二单元我们周围的空气 课题2 氧气 知识点归纳.docx
  • 人教版九年级上册 第三单元课题2原子的结构(第四课时)教案.docx人教版九年级上册 第三单元课题2原子的结构(第四课时)教案.docx
  • 人教版九年级上册 第三单元课题2原子的结构教案.docx人教版九年级上册 第三单元课题2原子的结构教案.docx
  • 人教版九年级上册 第三单元 物质构成的奥秘 评价二(无答案).docx人教版九年级上册 第三单元 物质构成的奥秘 评价二(无答案).docx
  • 人教版九年级上册 第三单元 物质构成的奥秘 评价三(无答案).docx人教版九年级上册 第三单元 物质构成的奥秘 评价三(无答案).docx
  • 人教版九年级上册 第三单元 课题3元素 教学设计.docx人教版九年级上册 第三单元 课题3元素 教学设计.docx
  • 人教版九年级上册 第三单元 课题3 元素 导学案.docx人教版九年级上册 第三单元 课题3 元素 导学案.docx
  • 人教版九年级上册 第三单元 课题2原子结构 第1课时 原子的构成和原子核外电子的排布 同步测试(有答案).docx人教版九年级上册 第三单元 课题2原子结构 第1课时 原子的构成和原子核外电子的排布 同步测试(有答案).docx
  • 人教版九年级上册 第三单元 课题2 原子结构(课时2:离子 相对原子质量)同步测试.docx人教版九年级上册 第三单元 课题2 原子结构(课时2:离子 相对原子质量)同步测试.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1