2022年解析卷人教版九年级数学上册期中定向练习试题 卷(Ⅰ)(含答案详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年解析卷人教版九年级数学上册期中定向练习试题 卷含答案详解 2022 解析 卷人教版 九年级 数学 上册 期中 定向 练习 试题 答案 详解
- 资源描述:
-
1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中定向练习试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、把抛物线向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物
2、线解析式是()ABCD2、在下列图形中,既是轴对称图形,又是中心对称图形的是()A等边三角形B直角三角形C正五边形D矩形3、如图,在中,将绕点顺时针旋转度得到,当点的对应点恰好落在边上时,则的长为()A1.6B1.8C2D2.64、把方程x2+2x5(x2)化成ax2+bx+c0的形式,则a,b,c的值分别为()A1,3,2B1,7,10C1,5,12D1,3,105、若关于x的一元二次方程x2ax0的一个解是1,则a的值为()A1B2C1D2二、多选题(5小题,每小题4分,共计20分)1、下列四个图形是国际通用的交通标志,其中不是中心对称图形的是()ABCD2、已知抛物线上部分点的横坐标与纵
3、坐标的对应值如表,则下列结论正确的是()010A对称轴为直线BCD关于的一元二次方程有两个不相等的实数解3、如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 Ab0Bab+c0C阴影部分的面积为4D若c=1,则b2=4a4、二次函数y=ax2+bx+c(a0)的部分图象如图所示,图象过点(1,0),对称轴为直线x=2,下列结论中正确的有()A4a+b=0B9a+c3bC7a3b+2c0D若点A(3,y1)、点B(,y2)、点C(7,
4、y3)在该函数图象上,则y1y3y2E若方程a(x+1)(x5)=3的两根为x1和x2,且x1x2,则x115x25、下列各数不是方程解的是()A6B2C4D0第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、九章算术是我国古代的数学名著,其中“勾股”章有一题,大意是说:已知矩形门的高比宽多尺,门的对角线长尺,那么门的高和宽各是多少?如果设门的宽为尺,根据题意,那么可列方程_2、已知函数y的图象如图所示,若直线ykx3与该图象有公共点,则k的最大值与最小值的和为 _3、在平面直角坐标系中,已知抛物线ymx22mxm2(m0)(1)抛物线的顶点坐标为_;(2)点M(x1,y
5、1)、N(x2,y2)(x1x23)是拋物线上的两点,若y1y2,x2x12,则y2的取值范围为_(用含 m的式子表示)4、如图,ABC和DEC关于点C成中心对称,若AC1,AB2,BAC90,则AE的长是_5、若点A(m,5)与点B(4,n)关于原点成中心对称,则mn_四、解答题(5小题,每小题8分,共计40分)1、如图,抛物线与轴交于两点,与轴交于点,且,.(1)求抛物线的表达式;(2)点是抛物线上一点 线 封 密 内 号学级年名姓 线 封 密 外 在抛物线的对称轴上,求作一点,使得的周长最小,并写出点的坐标;连接并延长,过抛物线上一点(点不与点重合)作轴,垂足为,与射线交于点,是否存在这
6、样的点,使得,若存在,求出点的坐标;若不存在,请说明理由2、已知关于的方程有实根(1)求的取值范围;(2)设方程的两个根分别是,且,试求的值3、抛物线过点,点,顶点为(1)求抛物线的表达式及点的坐标;(2)如图1,点在抛物线上,连接并延长交轴于点,连接,若是以为底的等腰三角形,求点的坐标;(3)如图2,在(2)的条件下,点是线段上(与点,不重合)的动点,连接,作,边交轴于点,设点的横坐标为,求的取值范围4、某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y(个)与销售单价x(元)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30
7、元时,每天的销售量为240个(1)求遮阳伞每天的销出量y(个)与销售单价x(元)之间的函数关系式;(2)设遮阳伞每天的销售利润为w(元),当销售单价定为多少元时,才能使每天的销售利润最大?最大利润是多少元?5、如图,抛物线交x轴于,两点,交y轴于点,点Q为线段BC上的动点(1)求抛物线的解析式;(2)求的最小值;(3)过点Q作交抛物线的第四象限部分于点P,连接PA,PB,记与的面积分别为,设,求点P坐标,使得S最大,并求此最大值-参考答案-一、单选题1、D【解析】【分析】直接根据“左加右减,上加下减”的原则进行解答即可【详解】由“左加右减”的原则可知,抛物线y=2x2向右平移2个单位所得抛物线
8、是y=2(x2)2; 线 封 密 内 号学级年名姓 线 封 密 外 由“上加下减”的原则可知,抛物线y=2(x2)2向下平移1个单位所得抛物线是y=2(x2)21.故选D.【考点】本题考查了二次函数图象与几何变换,解题的关键是掌握二次函数图象与几何变换.2、D【解析】【分析】根据轴对称图形和中心对称图形的概念逐一判断可得【详解】解:A等边三角形是轴对称图形,不是中心对称图形,不符合题意;B直角三角形既不是轴对称图形,也不是中心对称图形,不符合题意;C正五边形是轴对称图形,不是中心对称图形,不符合题意;D矩形既是轴对称图形,又是中心对称图形,符合题意;故选:D【考点】本题主要考查中心对称图形和轴
9、对称图形,解题的关键是掌握把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形3、A【解析】【分析】由将ABC绕点A按顺时针旋转一定角度得到ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由B=60,可证得ABD是等边三角形,继而可得BD=AB=2,则可求得答案【详解】由旋转的性质可知,为等边三角形,故选A【考点】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB4、D【解析】【分析】先把x2+2x5(x2)化简,然后根据一元二次方程的一般形式即可
10、得到a、b、c的值【详解】解:x2+2x5(x2),x2+2x5x10,x2+2x5x+100,x23x+100,则a1,b3,c10,故选:D【考点】此题主要考查了一元二次方程化为一般形式,熟练掌握一元二次方程的一般形式是解题的关键 线 封 密 内 号学级年名姓 线 封 密 外 5、C【解析】【分析】把x1代入方程x2ax0得1+a0,然后解关于a的方程即可【详解】解:把x1代入方程x2ax0得1+a0,解得a1故选C【考点】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解二、多选题1、BCD【解析】【分析】根据中心对称图形的概念求解【详解】解:A、是中
11、心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项符合题意故选:BCD【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合2、AC【解析】【分析】利用待定系数法求得二次函数解析式,然后利用二次函数的性质逐个进行判断【详解】解:由题意可得,将(-3,0)(-2,1)(-1,0)代入中,解得二次函数解析式为对称轴为直线,故选项A符合题意;,故选项B不符合题意;,故选项C符合题意;关于的一元二次方程为,即,方程有两个相等的实数根,故选项D不符合题意故选:AC【点睛】本题
12、考查待定系数法求二次函数解析式及二次函数的性质,掌握待定系数法求函数解析式及二次函数的性质正确计算是解题关键3、CD 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据抛物线的开口方向和抛物线的平移判断即可;【详解】抛物线开口向上,又对称轴,故A不正确;时,故B不正确;抛物线向右平移了2个单位,平行四边形的底时2,函数y=ax2+bx+c的最小值是,平行四边形的高是2,阴影部分的面积是,故C正确;,故D正确;故选CD【点睛】本题主要考查了二次函数图象与几何变换,准确分析判断是解题的关键4、ABE【解析】【分析】根据抛物线的对称轴为直线x2,则有4a+b0,可得A正确;根据二次函
13、数的对称性得到当x3时,函数值大于0,则9a+3b+c0,即9a+c3 b,可得B正确;由于x1时,y0,则ab+c0,易得c5a,所以7a-3b+2c9 a,再根据抛物线开口向下得a0,于是有7a3b+2c0,可得C错误;利用抛物线的对称性得到(3,)在抛物线上,然后利用二次函数的增减性可得D错误;作出直线 y3,然后依据函数图象进行判断可得E正确;综上即可得答案【详解】A项:x 2,4a+b0,故A正确B项:抛物线与x轴的一个交点为(-1,0),对称轴为直线x=2,另一个交点为(5,0),抛物线开口向下,当x3时,y0,即9a+3b+c0,9a+c3b,故B正确C项:抛物线与x轴的一个交点
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-711769.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
