分享
分享赚钱 收藏 举报 版权申诉 / 16

类型2023届新高考数学 小题必练13 导数及其应用.docx

  • 上传人:a****
  • 文档编号:752183
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:16
  • 大小:403.98KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2023届新高考数学 小题必练13 导数及其应用 2023 新高 数学 小题必练 13 导数 及其 应用
    资源描述:

    1、小题必练13 导数及其应用1根据导数几何意义求解函数切线问题2根据导数正负求解函数单调性3利用函数极值点求函数最值4通过导数求出单调性和极值,分析函数图象讨论求解恒成立问题1【2020全国卷文】曲线的一条切线的斜率为,则该切线的方程为【答案】【解析】由题意可得,设切点为,则,得,切点坐标为,切线方程为,即【点睛】设出切点,根据导数几何意义求出切点坐标,由点斜式求出切线方程2【2020全国卷文】设函数,若,则_【答案】【解析】,解得【点睛】求出,根据,求出一、单选题1若函数恰有两个不同的零点,则实数的取值范围为()ABCD【答案】B【解析】显然,不是函数的零点,令,得,构造函数,则,令,得到;令

    2、,得到且,即函数在上单调递减,在上单调递减,在上单调递增,所以函数有极小值,画出函数的图象,如图所示,由图像可知,当时,直线与的图象不可能有两个交点;当,只需,的图象与直线即有两个不同的交点,即函数恰有两个不同的零点,的取值范围为,故选B2函数在区间上的最大值是()ABCD【答案】C【解析】对于函数,当时,;当时,所以,函数在区间上单调递增,在区间上单调递减所以,故选C3已知函数,则其单调增区间是()ABCD【答案】A【解析】由,函数定义域为,求导,令,得或(舍去),所以单调增区间是,故选A4函数是上的单调函数,则的范围是()ABCD【答案】D【解析】函数是上的单调函数,即或(舍)在上恒成立,

    3、解得,故选D5已知函数,若直线过点,且与曲线相切,则直线的斜率为()ABCD【答案】B【解析】设切点坐标为,直线的斜率为,所以,直线的方程为,将点的坐标代入直线的方程得,解得,因此,直线的斜率为,故选B6已知函数的图像与x轴切于点,则的极值为()A极大值为,极小值为0B极大值为0,极小值为C极小值为,极大值为0D极小值为0,极大值为【答案】A【解析】由题意,函数,则,因为函数的图像与轴切于点,则,且,联立方程组,解得,即,则,当时,函数单调递增;当时,函数单调递减;当时,函数单调递增,所以函数的极大值为,极小值为,故选A7已知偶函数对于任意的满足(其中是函数的导函数),则下列不等式中成立的是(

    4、)ABCD【答案】D【解析】试题分析:令,因,故由题设可得,即函数在上单调递增且是偶函数又因,故,即,所以,故应选D8已知函数,若恰有个零点,则实数的取值范围是()ABCD【答案】D【解析】由恰有个零点,即方程恰有个实数根即函数的图像与的图像有三个交点,如图与函数的图像恒有一个交点,即函数与有两个交点设与函数相切于点,由,所以,得,所以切点为,此时,切线方程为,将向下平移可得与恒有两个交点,所以,故选D二、多选题9关于函数,下列说法正确的是()A是的极大值点B函数有且只有个零点C存在正整数,使得恒成立D对任意两个正实数,且,若,则【答案】BD【解析】对于A选项,函数的的定义域为,函数的导数,时

    5、,函数单调递减;时,函数单调递增,是的极小值点,故A错误;对于B选项,函数在上单调递减,又,函数有且只有1个零点,故B正确;对于C选项,若,可得,令,则,令,则,在上,函数单调递增;上,函数单调递减,在上函数单调递减,函数无最小值,不存在正实数,使得成立,故C错误;对于D选项,由,可知,要证,即证,且,由函数在是单调递增函数,所以有,由于,所以,即证明,令,则,所以在是单调递减函数,所以,即成立,故成立,所以D正确,综上,故正确的是BD,故选BD10设函数,若方程有六个不等的实数根,则实数a可取的值可能是()ABC1D2【答案】BC【解析】当时,则,由,得,即,此时为减函数;由,得,即,此时为

    6、增函数,即当时,取得极小值,作出的图象如图:由图象可知当时,有三个不同的x与对应,设,方程有六个不等的实数根,所以在内有两个不等的实根,设,即,则实数a可取的值可能是,1,故选BC11对于函数,下列说法正确的是()A在处取得极大值B有两个不同的零点CD若在上恒成立,则【答案】ACD【解析】由题意,函数,可得,令,即,解得,当时,函数在上单调递增;当时,函数在上单调递减,所以当时,函数取得极大值,极大值为,所以A正确;由当时,因为在上单调递增,所以函数在上只有一个零点,当时,可得,所以函数在上没有零点,综上可得函数在只有一个零点,所以B不正确;由函数在上单调递减,可得,由于,则,因为,所以,即,

    7、所以,所以C正确;由在上恒成立,即在上恒成立,设,则,令,即,解得,所以当时,函数在上单调递增;当时,函数在上单调递减,所以当时,函数取得最大值,最大值为,所以,所以D正确,故选ACD12已知函数,则下列说法正确的是()A当时,在单调递增B当时,在处的切线为轴C当时,在存在唯一极小值点,且D对任意,在一定存在零点【答案】AC【解析】对于A,当时,因为时,即,所以在上单调递增,故A正确;对于B,当时,则,即切点为,切线斜率为,故切线方程为,故B错误;对于C,当时,当时,则恒成立,即在上单调递增,又,因为,所以,所以存在唯一,使得成立,所以在上单调递减,在上单调递增,即在存在唯一极小值点,由,可得

    8、,因为,所以,则,故C正确;对于选项D,令,得,则,令,得,则,令,得,则,此时函数单调递减,令,得,则,此时函数单调递增,所以时,取得极小值,极小值为,在的极小值中,最小,当时,单调递减,所以函数的最小值为,当时,即时,函数与无交点,即在不存在零点,故D错误,故选AC三、填空题13已知三个函数,若,都有成立,求实数b的取值范围_【答案】【解析】由题知,在上单调递增;在上单调递减,易知在区间上的最大值为,都有成立,即在上的最大值大于等于在上的最大值,即,即,解得,故答案为14已知函数,若恒成立,则实数的取值范围是_【答案】【解析】当时,显然恒成立,此时;当时,等价于;当,等价于构造函数,求导得,当时,此时函数单调递减,且,只需,即可满足恒成立;当时,此时函数单调递减;当时,函数单调递增,所以在上的最小值为,只需,即可满足恒成立综上,实数需满足,即,故答案为15已知函数恰有3个不同的零点,则的取值范围是_【答案】【解析】,由,得或,此时函数单调递增,由,得,此时函数单调递减,即当时,函数取得极大值,即当时,函数取得极小值,若函数恰有3个不同的零点,则且,则,则,即的取值范围是,故答案为16已知在内有且仅有一个零点,则_,当时,函数的值域是,则_【答案】,【解析】,令,可得,在内有且仅有一个零点,则必有,且极小,则,此时在,又,故的值域是,即,所以

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2023届新高考数学 小题必练13 导数及其应用.docx
    链接地址:https://www.ketangku.com/wenku/file-752183.html
    相关资源 更多
  • 专题3 第四单元 第1课时.docx专题3 第四单元 第1课时.docx
  • 专题3 第二单元 第1课时.docx专题3 第二单元 第1课时.docx
  • 专题3 第三单元.docx专题3 第三单元.docx
  • 专题3 第三单元 第1课时.docx专题3 第三单元 第1课时.docx
  • 专题3 第一单元.docx专题3 第一单元.docx
  • 专题3 第一单元 第2课时.docx专题3 第一单元 第2课时.docx
  • 专题3 第一单元 第1课时.docx专题3 第一单元 第1课时.docx
  • 专题3 第14课时 带电粒子在复合场中的运动.docx专题3 第14课时 带电粒子在复合场中的运动.docx
  • 专题3 第11课时 电场.docx专题3 第11课时 电场.docx
  • 专题3 秦汉时期 2023年中考历史一轮复习专题训练(湖南专用).docx专题3 秦汉时期 2023年中考历史一轮复习专题训练(湖南专用).docx
  • 专题3 石油化工的基础物质——烃-【知识清单】2022-2023学年高二化学单元复习知识清单(苏教版2019选择性必修3).docx专题3 石油化工的基础物质——烃-【知识清单】2022-2023学年高二化学单元复习知识清单(苏教版2019选择性必修3).docx
  • 专题3 电学(解析版).docx专题3 电学(解析版).docx
  • 专题3 电学(原卷版).docx专题3 电学(原卷版).docx
  • 专题3 物态变化 物态变化章末综合检测(教师版).docx专题3 物态变化 物态变化章末综合检测(教师版).docx
  • 专题3 物态变化 物态变化章末综合检测(学生版).docx专题3 物态变化 物态变化章末综合检测(学生版).docx
  • 专题3 段落分析类-初中生一周轻松学记叙文阅读.docx专题3 段落分析类-初中生一周轻松学记叙文阅读.docx
  • 专题3 概率进一步认识(能力提升)(解析版).docx专题3 概率进一步认识(能力提升)(解析版).docx
  • 专题3 概率进一步认识(能力提升)(原卷版).docx专题3 概率进一步认识(能力提升)(原卷版).docx
  • 专题3 概率进一步认识(知识解读)(北师大版).docx专题3 概率进一步认识(知识解读)(北师大版).docx
  • 专题3 概率进一步认识(知识解读)-2022-2023学年九年级数学上册《同步考点解读•专题训练》(北师大版).docx专题3 概率进一步认识(知识解读)-2022-2023学年九年级数学上册《同步考点解读•专题训练》(北师大版).docx
  • 专题3 概率进一步认识(专项训练)-2022-2023学年九年级数学上册《同步考点解读•专题训练》(北师大版).docx专题3 概率进一步认识(专项训练)-2022-2023学年九年级数学上册《同步考点解读•专题训练》(北师大版).docx
  • 专题3 机械能与曲线运动的综合问题-2020-2021学年高一物理人教版必修二暑期训练资料.docx专题3 机械能与曲线运动的综合问题-2020-2021学年高一物理人教版必修二暑期训练资料.docx
  • 专题3 有理数的简便计算-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(原卷版).docx专题3 有理数的简便计算-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(原卷版).docx
  • 专题3 整式 2023年中考数学一轮复习专题训练(北京专用).docx专题3 整式 2023年中考数学一轮复习专题训练(北京专用).docx
  • 专题3 因式分解 安徽省2023年中考数学一轮复习专题训练.docx专题3 因式分解 安徽省2023年中考数学一轮复习专题训练.docx
  • 专题3 倍数和因数-小升初数学复习精编讲义(知识清单 经典例题 强化训练 名校冲刺).docx专题3 倍数和因数-小升初数学复习精编讲义(知识清单 经典例题 强化训练 名校冲刺).docx
  • 专题3 从海水中获得的化学物质-【知识清单】2022-2023学年高一化学上学期单元复习知识清单(苏教版2019必修第一册).docx专题3 从海水中获得的化学物质-【知识清单】2022-2023学年高一化学上学期单元复习知识清单(苏教版2019必修第一册).docx
  • 专题3 世界区域地图专项训练-2021高考地理名师常考地图重难点专项突破.docx专题3 世界区域地图专项训练-2021高考地理名师常考地图重难点专项突破.docx
  • 专题3除法-2023-2024学年四年级上册数学计算大通关(北师大版).docx专题3除法-2023-2024学年四年级上册数学计算大通关(北师大版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1