2024年新高考数学一轮复习题型归纳与达标检测第53讲圆锥曲线的综合应用-最值、范围问题(讲)(Word版附解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 新高 数学 一轮 复习 题型 归纳 达标 检测 53 圆锥曲线 综合 应用 范围 问题 Word 解析
- 资源描述:
-
1、第53讲 圆锥曲线的综合应用最值、范围问题思维导图知识梳理1几何转化代数法若题目的条件和结论能明显体现几何特征和意义,则考虑利用圆、圆锥曲线的定义、图形、几何性质来解决2函数取值法当题目给出的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值(或值域)、常用方法有:(1)配方法;(2)基本不等式法;(3)单调性法;(4)三角换元法;(5)导数法等,要特别注意自变量的取值范围.题型归纳题型1 构建目标不等式解最值或范围问题【例1-1】(2020山东济宁一模)已知椭圆C:1(ab0)的离心率为,且椭圆C过点.(1)求椭圆C的标准方程;(2)过椭圆C的右焦点的直线l与椭圆C分别相交于
2、A,B两点,且与圆O:x2y22相交于E,F两点,求|AB|EF|2的取值范围【解】(1)由题意得,所以a2b2,所以椭圆的方程为1,将点代入方程得b22,即a23,所以椭圆C的标准方程为1.(2)由(1)可知,椭圆的右焦点为(1,0),若直线l的斜率不存在,直线l的方程为x1,则A,B,E(1,1),F(1,1),所以|AB|,|EF|24,|AB|EF|2.若直线l的斜率存在,设直线l的方程为yk(x1),A(x1,y1),B(x2,y2)联立可得(23k2)x26k2x3k260,则x1x2,x1x2,所以|AB|.因为圆心O(0,0)到直线l的距离d,所以|EF|24,所以|AB|EF
3、|2.因为k20,),所以|AB|EF|2.综上,|AB|EF|2.【例1-2】设椭圆1(a)的右焦点为F,右顶点为A.已知|OA|OF|1,其中O为原点,e为椭圆的离心率(1)求椭圆的方程及离心率e的值;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BFHF,且MOAMAO,求直线l的斜率的取值范围解(1)由题意可知|OF|c ,又|OA|OF|1,所以a1,解得a2,所以椭圆的方程为1,离心率e.(2)设M(xM,yM),易知A(2,0),在MAO中,MOAMAO|MA|MO|,即(xM2)2yxy,化简得xM1.设直线l的斜率为k(k
4、0),则直线l的方程为yk(x2)设B(xB,yB),联立消去y,整理得(4k23)x216k2x16k2120,解得x2或x.由题意得xB,从而yB.由(1)知F(1,0),设H(0,yH),则(1,yH),.由BFHF,得0,即0,解得yH,所以直线MH的方程为yx.由消去y,得xM.由xM1,得1,解得k或k,所以直线l的斜率的取值范围为.【例1-3】已知中心在原点,焦点在y轴上的椭圆C,其上一点Q到两个焦点F1,F2的距离之和为4,离心率为.(1)求椭圆C的方程;(2)若直线l与椭圆C交于不同的两点M,N,且线段MN恰被直线x平分,设弦MN的垂直平分线的方程为ykxm,求m的取值范围解
5、(1)由题意可设椭圆C的方程为1(ab0),由条件可得a2,c,则b1.故椭圆C的方程为x21.(2)法一:设弦MN的中点为P,M(xM,yM),N(xN,yN),则由点M,N为椭圆C上的点,可知4xy4,4xy4,两式相减,得4(xMxN)(xMxN)(yMyN)(yMyN)0,将xMxN21,yMyN2y0,代入上式得k.又点P在弦MN的垂直平分线上,所以y0km,所以my0ky0.由点P在线段BB上,所以yBy0yB,即y0.所以m0,得k,所以mk,即m的取值范围为.【跟踪训练1-1】已知焦点在y轴上的椭圆E的中心是原点O,离心率等于,以椭圆E的长轴和短轴为对角线的四边形的周长为4.直
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-766172.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
