分享
分享赚钱 收藏 举报 版权申诉 / 22

类型专题10 二次函数-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版) .docx

  • 上传人:a****
  • 文档编号:831077
  • 上传时间:2025-12-16
  • 格式:DOCX
  • 页数:22
  • 大小:1,004.75KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题10 二次函数-三年2019-2021中考真题数学分项汇编全国通用原卷版 专题 10 二次 函数 三年 2019 2021 中考 数学 汇编 全国 通用 原卷版
    资源描述:

    1、专题10.二次函数一、单选题1(2021山西中考真题)抛物线的函数表达式为,若将轴向上平移2个单位长度,将轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为( )A B C D2(2021四川凉山彝族自治州中考真题)二次函数的图象如图所示,则下列结论中不正确的是( )A B函数的最大值为 C当时, D 3(2021四川达州市中考真题)如图,已知抛物线(,为常数,)经过点,且对称轴为直线,有下列结论:;无论,取何值,抛物线一定经过;其中正确结论有( )A1个B2个C3个D4个4(2021陕西中考真题)下表中列出的是一个二次函数的自变量x与函数y的几组对应值:-20136-4-

    2、6-4下列各选项中,正确的是A这个函数的图象开口向下 B这个函数的图象与x轴无交点C这个函数的最小值小于-6 D当时,y的值随x值的增大而增大5(2021四川眉山市中考真题)在平面直角坐标系中,抛物线与轴交于点,则该抛物线关于点成中心对称的抛物线的表达式为( )A B C D6(2021上海中考真题)将抛物线向下平移两个单位,以下说法错误的是( )A开口方向不变B对称轴不变 Cy随x的变化情况不变 D与y轴的交点不变7(2021江苏苏州市中考真题)已知抛物线的对称轴在轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则的值是( )A或2BC2D

    3、8(2021天津中考真题)已知抛物线(是常数,)经过点,当时,与其对应的函数值有下列结论:;关于x的方程有两个不等的实数根;其中,正确结论的个数是( )A0B1C2D39(2021四川遂宁市中考真题)已知二次函数的图象如图所示,有下列5个结论:;();若方程1有四个根,则这四个根的和为2,其中正确的结论有( )A2个B3个C4个D5个10(2021山东泰安市中考真题)将抛物线的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过( )ABCD11(2021四川资阳市中考真题)已知A、B两点的坐标分别为、,线段上有一动点,过点M作x轴的平行线交抛物线于、两点若,则a的取值范围为( )AB

    4、CD12(2021四川泸州市中考真题)直线l过点(0,4)且与y轴垂直,若二次函数(其中x是自变量)的图像与直线l有两个不同的交点,且其对称轴在y轴右侧,则a的取值范围是( )Aa4Ba0C0a4D0a413(2021浙江中考真题)已知抛物线与轴的交点为和,点,是抛物线上不同于的两个点,记的面积为的面积为有下列结论:当时,;当时,;当时,;当时,其中正确结论的个数是( )A1B2C3D414(2020四川广安市中考真题)二次函数y=ax2十bx+c(a,b,c为常数,a0)的部分图象如图所示,图象顶点的坐标为(2,1),与x轴的一个交点在点(3,0)和点(4,0)之间,有下列结论:;c-4a=

    5、1;(m为任意实数)其中正确的有()A2个B3个C4个D5个 15(2020新疆中考真题)二次函数yax2+bx+c的图象如下左图所示,则一次函数yax+b和反比例函数在同一平面直角坐标系中的图象可能是()ABCD16(2020山东济南市中考真题)已知抛物线yx2+(2m6)x+m23与y轴交于点A,与直线x4交于点B,当x2时,y值随x值的增大而增大记抛物线在线段AB下方的部分为G(包含A、B两点),M为G上任意一点,设M的纵坐标为t,若,则m的取值范围是()AmBm3Cm3D1m317(2020辽宁阜新市中考真题)已知二次函数 ,则下列关于这个函数图象和性质的说法,正确的是( )A图象的开

    6、口向下B图象的顶点坐标是 C当 时,y随x的增大而减少D图象与x轴有唯一交点18(2020四川中考真题)已知不等式ax+b0的解集为x2,则下列结论正确的个数是()(1)2a+b0;(2)当ca时,函数yax2+bx+c的图象与x轴没有公共点;(3)当c0时,抛物线yax2+bx+c的顶点在直线yax+b的上方;(4)如果b3且2ambm0,则m的取值范围是m0A1B2C3D419(2020山东日照市中考真题)如图,二次函数yax2+bx+c(a0)图象的对称轴为直线x1,下列结论:abc0;3ac;若m为任意实数,则有abmam2+b; 若图象经过点(3,2),方程ax2+bx+c+20的两

    7、根为x1,x2(|x1|x2|),则2x1x25其中正确的结论的个数是()A4个B3个C2个D1个 20(2020辽宁铁岭市)如图,二次函数的图象的对称轴是直线,则以下四个结论中:,正确的个数是( )A1B2C3D421(2020四川绵阳市中考真题)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A4米B5米C2米D7米22(2020云南昆明市中考真题)如图,抛物线yax2+bx+c(a0)的对称轴为直线x1,

    8、与y轴交于点B(0,2),点A(1,m)在抛物线上,则下列结论中错误的是()Aab0 B一元二次方程ax2+bx+c0的正实数根在2和3之间Ca D点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t时,y1y2 23(2020辽宁丹东市中考真题)如图,二次函数()的图象与轴交于,两点,与轴交于点,点坐标为,点在与之间(不包括这两点),抛物线的顶点为,对称轴为直线,有以下结论:;若点,点是函数图象上的两点,则;可以是等腰直角三形其中正确的有( )A1个B2个C3个D4个24(2020贵州毕节市中考真题)已知的图象如图所示,对称轴为直线,若,是一元二次方程的两个根,且,则下列说法正确的是

    9、( )ABCD25(2020内蒙古呼和浩特市中考真题)关于二次函数,下列说法错误的是( )A若将图象向上平移10个单位,再向左平移2个单位后过点,则B当时,y有最小值C对应的函数值比最小值大7D当时,图象与x轴有两个不同的交点26(2020四川宜宾市中考真题)函数的图象与x轴交于点(2,0),顶点坐标为(-1,n),其中,以下结论正确的是( ) ;函数在处的函数值相等;函数的图象与的函数图象总有两个不同的交点;函数在内既有最大值又有最小值ABCD27(2020黑龙江齐齐哈尔市中考真题)如图,抛物线yax2+bx+c(a0)与x轴交于点(4,0),其对称轴为直线x1,结合图象给出下列结论:ac0

    10、;4a2b+c0;当x2时,y随x的增大而增大;关于x的一元二次方程ax2+bx+c0有两个不相等的实数根其中正确的结论有()A1个B2个C3个D4个 28(2020湖北随州市中考真题)如图所示,已知二次函数的图象与轴交于,两点,与轴的正半轴交于点,顶点为,则下列结论:;当是等腰三角形时,的值有2个;当是直角三角形时,其中正确的有( )A1个B2个C3个D4个29(2020福建中考真题)已知,是抛物线上的点,下列命题正确的是( )A若,则B若,则C若,则D若,则30(2020湖南长沙市中考真题)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭

    11、豆腐时,我们把焦脆而不糊的豆腐块数的百分比称为“可食用率”,在特定条件下,“可食用率”p与加工煎炸的时间t(单位:分钟)近似满足函数关系式:(a,b,c为常数),如图纪录了三次实验数据,根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为( )A3.50分钟B4.05分钟C3.75分钟D4.25分钟 二、填空题31(2021山东菏泽市中考真题)定义:为二次函数()的特征数,下面给出特征数为的二次函数的一些结论:当时,函数图象的对称轴是轴;当时,函数图象过原点;当时,函数有最小值;如果,当时,随的增大而减小,其中所有正确结论的序号是_32(2021湖北武汉市中考真题)如图(1),在中,

    12、边上的点从顶点出发,向顶点运动,同时,边上的点从顶点出发,向顶点运动,两点运动速度的大小相等,设,关于的函数图象如图(2),图象过点,则图象最低点的横坐标是_33(2021湖北武汉市中考真题)已知抛物线(,是常数),下列四个结论:若抛物线经过点,则;若,则方程一定有根;抛物线与轴一定有两个不同的公共点;点,在抛物线上,若,则当时,其中正确的是_(填写序号)34(2021四川成都市中考真题)在平面直角坐标系中,若抛物线与x轴只有一个交点,则_35(2021山东泰安市中考真题)如图是抛物线的部分图象,图象过点,对称轴为直线,有下列四个结论:;y的最大值为3;方程有实数根其中正确的为_(将所有正确结

    13、论的序号都填入)36(2021江苏连云港市中考真题)某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是_元37(2021四川南充市中考真题)关于抛物线,给出下列结论:当时,抛物线与直线没有交点;若抛物线与x轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;若抛物线的顶点在点(0,0),(2,0),(0,2)所

    14、围成的三角形区域内(包括边界),则其中正确结论的序号是_38(2021安徽中考真题)设抛物线,其中a为实数(1)若抛物线经过点,则_;(2)将抛物线向上平移2个单位,所得抛物线顶点的纵坐标的最大值是_39(2021浙江中考真题)已知在平面直角坐标系中,点的坐标为是抛物线对称轴上的一个动点小明经探究发现:当的值确定时,抛物线的对称轴上能使为直角三角形的点的个数也随之确定若抛物线的对称轴上存在3个不同的点,使为直角三角形,则的值是_40(2020广西贵港市中考真题)如图,对于抛物线,给出下列结论:这三条抛物线都经过点;抛物线的对称轴可由抛物线的对称轴向右平移1个单位而得到;这三条抛物线的顶点在同一

    15、条直线上;这三条抛物线与直线的交点中,相邻两点之间的距离相等其中正确结论的序号是_ 41(2020黑龙江大庆市中考真题)已知关于的一元二次方程,有下列结论:当时,方程有两个不相等的实根;当时,方程不可能有两个异号的实根;当时,方程的两个实根不可能都小于1;当时,方程的两个实根一个大于3,另一个小于3以上4个结论中,正确的个数为_42(2020湖北荆州市中考真题)我们约定:为函数的关联数,当其图象与坐标轴交点的横、纵坐标均为整数时,该交点为“整交点”,若关联数为的函数图象与x轴有两个整交点(m为正整数),则这个函数图象上整交点的坐标为_43(2020广东广州市中考真题)对某条线段的长度进行了3次

    16、测量,得到3个结果(单位:)9.9,10.1,10.0,若用作为这条线段长度的近以值,当_时,最小对另一条线段的长度进行了次测量,得到个结果(单位:),若用作为这条线段长度的近似值,当_时,最小44(2020四川内江市中考真题)已知抛物线(如图)和直线我们规定:当x取任意一个值时,x对应的函数值分别为和若,取和中较大者为M;若,记当时,M的最大值为4;当时,使的x的取值范围是;当时,使的x的值是,;当时,M随x的增大而增大上述结论正确的是_(填写所有正确结论的序号)45(2020湖北武汉市中考真题)抛物线(,为常数,)经过,两点,下列四个结论:一元二次方程的根为,;若点,在该抛物线上,则;对于

    17、任意实数,总有;对于的每一个确定值,若一元二次方程(为常数,)的根为整数,则的值只有两个其中正确的结论是_(填写序号)46(2020山东泰安市中考真题)已知二次函数(是常数,)的与的部分对应值如下表:02606下列结论:;当时,函数最小值为;若点,点在二次函数图象上,则;方程有两个不相等的实数根其中,正确结论的序号是_(把所有正确结论的序号都填上)47(2019四川广元市中考真题)如图,抛物线过点,且顶点在第一象限,设,则M的取值范围是_ 48(2019广西贵港市中考真题)我们定义一种新函数:形如(,且)的函数叫做“鹊桥”函数小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),

    18、并写出下列五个结论:图象与坐标轴的交点为,和;图象具有对称性,对称轴是直线;当或时,函数值随值的增大而增大;当或时,函数的最小值是0;当时,函数的最大值是4其中正确结论的个数是_.三、解答题49(2021安徽中考真题)已知抛物线的对称轴为直线(1)求a的值;(2)若点M(x1,y1),N(x2,y2)都在此抛物线上,且,比较y1与y2的大小,并说明理由;(3)设直线与抛物线交于点A、B,与抛物线交于点C,D,求线段AB与线段CD的长度之比50(2021浙江绍兴市中考真题)小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体ACB是抛物线的一部分,抛物线的顶点C在

    19、y轴上,杯口直径,且点A,B关于y轴对称,杯脚高,杯高,杯底MN在x轴上(1)求杯体ACB所在抛物线的函数表达式(不必写出x的取值范围)(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体所在抛物线形状不变,杯口直径,杯脚高CO不变,杯深与杯高之比为0.6,求的长51(2021湖北十堰市中考真题)某商贸公司购进某种商品的成本为20元/,经过市场调研发现,这种商品在未来40天的销售单价y(元/)与时间x(天)之间的函数关系式为:且x为整数,且日销量与时间x(天)之间的变化规律符合一次函数关系,如下表:时间x(天)13610日销量142138132124填空:(1)m与x的函数关系为_;(2)

    20、哪一天的销售利润最大?最大日销售利润是多少?(3)在实际销售的前20天中,公司决定每销售商品就捐赠n元利润()给当地福利院,后发现:在前20天中,每天扣除捐赠后的日销售利润随时间x的增大而增大,求n的取值范围52(2021四川达州市中考真题)渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克为增大市场占有率,在保证盈利的情况下,工厂采取降价措施批发价每千克降低1元,每天销量可增加50千克(1)写出工厂每天的利润元与降价元之间的函数关系当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大

    21、为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?53(2021湖南怀化市中考真题)某超市从厂家购进A、B两种型号的水杯,两次购进水杯的情况如下表:进货批次A型水杯(个)B型水杯(个)总费用(元)一1002008000二20030013000(1)求A、B两种型号的水杯进价各是多少元?(2)在销售过程中,A型水杯因为物美价廉而更受消费者喜欢为了增大B型水杯的销售量,超市决定对B型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B型水杯降价多少元时,每天售出B型水杯的利润达到最大?最大利润是多少?(3)第三次进货用

    22、10000元钱购进这两种水杯,如果每销售出一个A型水杯可获利10元,售出一个B型水杯可获利9元,超市决定每售出一个A型水杯就为当地“新冠疫情防控”捐b元用于购买防控物资若A、B两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b为多少?利润为多少?54(2021湖北黄冈市中考真题)红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件一个月可售出5万件;月销售单价每涨价1元,月销售量就减少万件其中月销售单价不低于成本设月销售单价为x(单位:元/件),月销售量为y(单位:万件)(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当月销售单价是多少元/

    23、件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值55(2021新疆中考真题)已知抛物线(1)求抛物线的对称轴;(2)把抛物线沿y轴向下平移个单位,若抛物线的顶点落在x轴上,求a的值;(3)设点,在抛物线上,若,求a的取值范围56(2021湖南长沙市中考真题)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于轴对称,则把该函数称之为“T函数”,其图象上关于轴对称的不同两点叫做一对“T点”根据该约定,完成下列各题(1)若

    24、点与点是关于的“T函数”的图象上的一对“T点”,则_,_,_(将正确答案填在相应的横线上);(2)关于的函数(,是常数)是“T函数”吗?如果是,指出它有多少对“T点”;如果不是,请说明理由;(3)若关于的“T函数”(,且,是常数)经过坐标原点,且与直线(,且,是常数)交于,两点,当,满足时,直线是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由57(2021湖北武汉市中考真题)在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有机产品,原料的单价是原料单价的1.5倍,若用900元收购原料会比用900元收购原料少生产该产品每盒需要原料和原料,每盒还需其他成本9元市

    25、场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒 (1)求每盒产品的成本(成本原料费其他成本);(2)设每盒产品的售价是元(是整数),每天的利润是元,求关于的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润58(2021陕西中考真题)已知抛物线与x轴交于点A、B(其中A在点B的左侧),与y轴交于点C(1)求点B、C的坐标;(2)设点与点C关于该抛物线的对称轴对称在y轴上是否存在点P,使与相似且与是对应边?若存在,求点P的坐标;若不存在,请说明理由59(2021浙江杭州市中考真

    26、题)在直角坐标系中,设函数(,是常数,)(1)若该函数的图象经过和两点,求函数的表达式,并写出函数图象的顶点坐标(2)写出一组,的值,使函数的图象与轴有两个不同的交点,并说明理由(3)已知,当(,是实数,)时,该函数对应的函数值分别为,若,求证60(2021山东临沂市中考真题)公路上正在行驶的甲车,发现前方20m处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s(单位:m)、速度v(单位:m/s)与时间t(单位:s) 的关系分别可以用二次函数和一次函数表示,其图象如图所示(1)当甲车减速至9m/s时,它行驶的路程是多少?(2)若乙车以10m/s的速度匀速行驶,两车何时相距最近,最近距离

    27、是多少?61(2021四川乐山市中考真题)已知关于的一元二次方程(1)若方程有两个不相等的实数根,求的取值范围;(2)二次函数的部分图象如图所示,求一元二次方程的解62(2021浙江丽水市中考真题)如图,已知抛物线经过点(1)求的值;(2)连结,交抛物线L的对称轴于点M求点M的坐标;将抛物线L向左平移个单位得到抛物线过点M作轴,交抛物线于点NP是抛物线上一点,横坐标为,过点P作轴,交抛物线L于点E,点E在抛物线L对称轴的右侧若,求m的值63(2021江苏扬州市中考真题)如图,在平面直角坐标系中,二次函数的图像与x轴交于点、,与y轴交于点C(1)_,_;(2)若点D在该二次函数的图像上,且,求点

    28、D的坐标;(3)若点P是该二次函数图像上位于x轴上方的一点,且,直接写出点P的坐标64(2021浙江金华市中考真题)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线第一象限部分的函数表达式为(1)求雕塑高OA(2)求落水点C,D之间的距离(3)若需要在OD上的点E处竖立雕塑EF,问:顶部F是否会碰到水柱?请通过计算说明65(2021山东泰安市中考真题)二次函数的图象经过点,与y轴交于点C,点P为第二象限内抛物线上一点,连接、,交于点Q,过点P作轴

    29、于点D(1)求二次函数的表达式;(2)连接,当时,求直线的表达式;(3)请判断:是否有最大值,如有请求出有最大值时点P的坐标,如没有请说明理由66(2021浙江温州市中考真题)已知抛物线经过点(1)求抛物线的函数表达式和顶点坐标(2)直线交抛物线于点,为正数若点在抛物线上且在直线下方(不与点,重合),分别求出点横坐标与纵坐标的取值范围,67(2021浙江嘉兴市中考真题)已知二次函数(1)求二次函数图象的顶点坐标;(2)当时,函数的最大值和最小值分别为多少?(3)当时,函数的最大值为,最小值为,m-n=3求的值68(2021浙江中考真题)如图,已知经过原点的抛物线与轴交于另一点A(2,0)(1)

    30、求的值和抛物线顶点的坐标;(2)求直线的解析式69(2020广西贵港市中考真题)如图,已知抛物线与轴相交于,与轴相交于点,直线,垂足为(1)求该抛物线的表达式:(2)若直线与该抛物线的另一个交点为,求点的坐标;(3)设动点在该抛物线上,当时,求的值70(2020山东济南市中考真题)如图1,抛物线yx2bxc过点A(1,0),点B(3,0)与y轴交于点C在x轴上有一动点E(m,0)(0m3),过点E作直线lx轴,交抛物线于点M(1)求抛物线的解析式及C点坐标;(2)当m1时,D是直线l上的点且在第一象限内,若ACD是以DCA为底角的等腰三角形,求点D的坐标;(3)如图2,连接BM并延长交y轴于点

    31、N,连接AM,OM,设AEM的面积为S1,MON的面积为S2,若S12S2,求m的值71(2020山东日照市中考真题)如图,函数yx2+bx+c的图象经过点A(m,0),B(0,n)两点,m,n分别是方程x22x30的两个实数根,且mn()求m,n的值以及函数的解析式;()设抛物线yx2+bx+c与x轴的另一个交点为C,抛物线的顶点为D,连接AB,BC,BD,CD求证:BCDOBA;()对于()中所求的函数yx2+bx+c,(1)当0x3时,求函数y的最大值和最小值;(2)设函数y在txt+1内的最大值为p,最小值为q,若pq3,求t的值72(2020山东日照市中考真题)如图,某小区有一块靠墙

    32、(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计)(1)若四块矩形花圃的面积相等,求证:AE3BE;(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围73(2020湖北荆门市中考真题)如图,抛物线与x轴正半轴交于点A,与y轴交于点B(1)求直线的解析式及抛物线顶点坐标;(2)如图1,点P为第四象限且在对称轴右侧抛物线上一动点,过点P作轴,垂足为C,交于点D,求的最大值,并求出此时点P的坐标;(3)如图2,将抛物线向右平移得到抛物线,直线与抛物线交于M,N两点,若点A是线段的中点,求抛物线的解析式

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题10 二次函数-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版) .docx
    链接地址:https://www.ketangku.com/wenku/file-831077.html
    相关资源 更多
  • 圆--教学设计(莫雪雪).docx圆--教学设计(莫雪雪).docx
  • 图说“比热容和热机”.docx图说“比热容和热机”.docx
  • 图版高中地理必修二3.3《地域联系-地域联系的重要性及主要方式》练习与答案.docx图版高中地理必修二3.3《地域联系-地域联系的重要性及主要方式》练习与答案.docx
  • 图形计算典型真题-云南省2023-2024学年四年级上册数学期末真题精选(人教版).docx图形计算典型真题-云南省2023-2024学年四年级上册数学期末真题精选(人教版).docx
  • 图形的运动-欣赏与设计学案.docx图形的运动-欣赏与设计学案.docx
  • 图形的运动-图形的运动教案.docx图形的运动-图形的运动教案.docx
  • 图形的运动-图形的旋转(二)教案.docx图形的运动-图形的旋转(二)教案.docx
  • 图形的运动-图形的旋转(二)学案.docx图形的运动-图形的旋转(二)学案.docx
  • 图形的运动-图形的旋转(一)教案.docx图形的运动-图形的旋转(一)教案.docx
  • 图形的运动-图形的旋转(一)学案.docx图形的运动-图形的旋转(一)学案.docx
  • 图形的运动(三)单元检测卷(二).docx图形的运动(三)单元检测卷(二).docx
  • 图形的旋转--点评(姜昊).docx图形的旋转--点评(姜昊).docx
  • 图形的旋转--点评(何丽娟).docx图形的旋转--点评(何丽娟).docx
  • 图形的旋转--教学设计(何丽娟).docx图形的旋转--教学设计(何丽娟).docx
  • 图形与几何第5课时图形与位置教案(人教版六下数学).docx图形与几何第5课时图形与位置教案(人教版六下数学).docx
  • 图形与几何第4课时图形的运动教案(人教版六下数学).docx图形与几何第4课时图形的运动教案(人教版六下数学).docx
  • 图形与几何第2课时平面图形的认识与测量(2)教案(人教版六下数学).docx图形与几何第2课时平面图形的认识与测量(2)教案(人教版六下数学).docx
  • 图形与几何第1课时平面图形的认识与测量(1)教案(人教版六下数学).docx图形与几何第1课时平面图形的认识与测量(1)教案(人教版六下数学).docx
  • 图形与位置知识点梳理.docx图形与位置知识点梳理.docx
  • 图像题05 摩擦力、功率、机械效率类-2022年中考物理二轮题型专项复习(全国通用).docx图像题05 摩擦力、功率、机械效率类-2022年中考物理二轮题型专项复习(全国通用).docx
  • 图像题04 电功率类-2022年中考物理二轮题型专项复习(全国通用).docx图像题04 电功率类-2022年中考物理二轮题型专项复习(全国通用).docx
  • 图像题03 欧姆定律类-2022年中考物理二轮题型专项复习(全国通用).docx图像题03 欧姆定律类-2022年中考物理二轮题型专项复习(全国通用).docx
  • 图像题02 热学类-2022年中考物理二轮题型专项复习(全国通用).docx图像题02 热学类-2022年中考物理二轮题型专项复习(全国通用).docx
  • 图像题01 机械运动类-2022年中考物理二轮题型专项复习(全国通用).docx图像题01 机械运动类-2022年中考物理二轮题型专项复习(全国通用).docx
  • 图书销售合1.docx图书销售合1.docx
  • 图书室、阅览室管理制度.docx图书室、阅览室管理制度.docx
  • 图书出版合同范本.docx图书出版合同范本.docx
  • 图书出版发行合1.docx图书出版发行合1.docx
  • 国际音标表flash国际音标ppt.docx国际音标表flash国际音标ppt.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1