分享
分享赚钱 收藏 举报 版权申诉 / 6

类型专题11函数与方程-2021年新高考数学基础考点一轮复习.docx

  • 上传人:a****
  • 文档编号:831336
  • 上传时间:2025-12-16
  • 格式:DOCX
  • 页数:6
  • 大小:122.05KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题11 函数与方程-2021年新高考数学基础考点一轮复习 专题 11 函数 方程 2021 新高 数学 基础 考点 一轮 复习
    资源描述:

    1、专题11 函数与方程【考点总结】1函数的零点(1)函数零点的定义:对于函数yf(x),把使f(x)0的实数x叫做函数yf(x)的零点(2)三个等价关系:方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点2函数零点的判定如果函数yf(x)在区间a,b上的图象是连续不断的一条曲线,并且有f(a)f(b)0,那么函数yf(x)在区间(a,b)内有零点,即存在c(a,b),使得f(c)0,这个c也就是f(x)0的根我们把这一结论称为函数零点存在性定理3二次函数yax2bxc(a0)的图象与零点的关系000二次函数yax2bxc(a0) 的图象与x轴的交点(x1,0),(x2,0

    2、)(x1,0)无交点零点个数来源:Zxxk.Com两个一个零个【常用结论】有关函数零点的三个结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号【易错总结】(1)错用零点存在性定理;(2)误解函数零点的定义;(3)忽略限制条件;(4)错用二次函数在R上无零点的条件例1函数f(x)x的零点个数是_解析:函数的定义域为x|x0,当x0时,f(x)0,当x0时,f(x)0即可,即1m0且8m0,解得8m1.答案:(8,1例4若二次函数f(x)x2kx

    3、k在R上无零点,则实数k的取值范围是_解析:由题意得k24k0,解得0k4.答案:(0,4)【考点解析】【考点】一、函数零点所在区间的判断例1设f(x)ln xx2,则函数f(x)的零点所在的区间为()A(0,1)B(1,2)C(2,3) D(3,4)解析:选B.因为f(1)ln 11210,f(2)ln 20,所以f(1)f(2)0,因为函数f(x)ln xx2的图象是连续的,且为增函数,所以f(x)的零点所在的区间是(1,2)例2若abc,则函数f(x)(xa)(xb)(xb)(xc)(xc)(xa)的两个零点分别位于区间()A(a,b)和(b,c)内 B(,a)和(a,b)内C(b,c)

    4、和(c,)内 D(,a)和(c,)内解析:选A.因为abc,所以f(a)(ab)(ac)0,f(b)(bc)(ba)0,f(c)(ca)(cb)0,由函数零点存在性定理可知,在区间(a,b),(b,c)内分别存在零点,又函数f(x)是二次函数,最多有两个零点因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内,故选A.例3设函数y1x3与y2的图象的交点为(x0,y0),若x0(n,n1),nN,则x0所在的区间是_解析:令f(x)x3,则f(x0)0,易知f(x)为增函数,来源:Zxxk.Com有f(1)0,所以x0所在的区间是(1,2)来源:Z&xx&k.Com答案:(1,2)确

    5、定函数零点所在区间的方法(1)解方程法:当对应方程f(x)0易解时,可先解方程,然后再看求得的根是否落在给定区间上(2)图象法:把方程转化为两个函数,看它的交点所在区间(3)利用函数零点的存在性定理:首先看函数yf(x)在区间a,b上的图象是否连续,再看是否有f(a)f(b)0.若有,则函数yf(x)在区间(a,b)内必有零点(4)数形结合法:通过画函数图象,观察图象与x轴在给定区间上是否有交点来判断 来源:学_科_网【考点】二、函数零点的个数例1、(1)函数f(x)的零点个数是_(2)函数f(x)4cos2cos2sin x|ln(x1)|的零点个数为_【解析】(1)当x0时,令x220,解

    6、得x(正根舍去),所以在(,0上有一个零点;当x0时,f(x)20恒成立,所以f(x)在(0,)上是增函数又因为f(2)2ln 20,所以f(x)在(0,)上有一个零点,综上,函数f(x)的零点个数为2.(2)f(x)2(1cos x)sin x2sin x|ln(x1)|sin 2x|ln(x1)|,x1,函数f(x)的零点个数即为函数y1sin 2x(x1)与 y2|ln(x1)|(x1)的图象的交点个数分别作出两个函数的图象,如图,可知有两个交点,则f(x)有两个零点【答案】(1)2(2)2判断函数零点个数的方法(1)解方程法:所对应方程f(x)0有几个不同的实数解就有几个零点(2)零点

    7、存在性定理法:利用零点存在性定理并结合函数的性质进行判断(3)数形结合法:转化为两个函数的图象的交点个数问题先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数 【变式】1设函数f(x)是定义在R上的奇函数,当x0时,f(x)exx3,则f(x)的零点个数为()A1 B2C3 D4解析:选C.因为函数f(x)是定义域为R的奇函数,所以f(0)0,所以0是函数f(x)的一个零点当x0时,令f(x)exx30.则exx3.分别画出函数yex和yx3的图象,如图所示,有一个交点,所以函数f(x)在(0,)上有一个零点又根据对称性知,当x0时函数f(x)也有一个零点综上所述,f(x

    8、)的零点个数为3.【变式】2函数f(x)2x|log0.5x|1的零点个数为_解析:由f(x)0,得|log0.5x|,作出函数y1|log0.5x|和y2的图象,由右图知两函数图象有2个交点,故函数f(x)有2个零点答案:2【考点】三、函数零点的应用角度一根据函数零点个数求参数例1、(2020安徽合肥二模)设函数f(x)若函数g(x)f(x)b有三个零点,则实数b的取值范围是()A(1,) BC(1,)0 D(0,1【解析】令g(x)f(x)b0,函数g(x)f(x)b有三个零点等价于f(x)b有三个根,当x0时,f(x)ex(x1),则f(x)ex(x1)exex(x2 ),由f(x)0得

    9、ex(x2)0,即x0得ex(x2)0,即2x0,此时f(x)为增函数,即当x2时,f(x)取得极小值f(2),作出f(x)的图象如图,要使f(x)b有三个根,则0b1,故选D.【答案】D角度二根据函数有无零点求参数例2、(1)函数f(x)x2ax1在区间上有零点,则实数a的取值范围是()A(2,) B2,)C. D(2)已知函数f(x)则使函数g(x)f(x)xm有零点的实数m的取值范围是()A0,1) B(,1)C(,1(2,) D(,0(1,)【解析】(1)由题意知方程axx21在上有解,即ax在上有解,设tx,x,则t的取值范围是.所以实数a的取值范围是.(2)函数g(x)f(x)xm

    10、的零点就是方程f(x)xm的根,画出h(x)f(x)x的大致图象(图略)观察它与直线ym的交点,得知当m0或m1时,有交点,即函数g(x)f(x)xm有零点【答案】(1)D(2)D角度三根据函数零点的范围求参数例3、若函数f(x)(m2)x2mx(2m1)的两个零点分别在区间(1,0)和区间(1,2)内,则m的取值范围是_【解析】依题意,结合函数f(x)的图象分析可知m需满足即解得m.【答案】来源:学科网ZXXK根据函数零点的情况求参数的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解 【变式】1方程log(a2x)2x有解,则a的最小值为_解析:若方程log(a2x)2x有解,则a2x有解,即2xa有解,因为2x1,故a的最小值为1.答案:1【变式】2已知函数f(x),g(x)f(x)xa.若g(x)存在2个零点,则a的取值范围是_解析:函数g(x)f(x)xa存在2个零点,即关于x的方程f(x)xa有2个不同的实根,即函数f(x)的图象与直线yxa有2个交点,作出直线yxa与函数f(x)的图象,如图所示,由图可知,a1,解得a1.答案:a1

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题11函数与方程-2021年新高考数学基础考点一轮复习.docx
    链接地址:https://www.ketangku.com/wenku/file-831336.html
    相关资源 更多
  • 人教版地理八年级下教案:第七章第一节 自然特征与农业.docx人教版地理八年级下教案:第七章第一节 自然特征与农业.docx
  • 人教版地理八年级下教案:第七章第一节 自然特征与农业.docx人教版地理八年级下教案:第七章第一节 自然特征与农业.docx
  • 人教版地理八年级下册:第十章《中国在世界中》课时练.docx人教版地理八年级下册:第十章《中国在世界中》课时练.docx
  • 人教版地理八年级下册:第9章 青藏地区《高原湿地—三江源地区》课时练.docx人教版地理八年级下册:第9章 青藏地区《高原湿地—三江源地区》课时练.docx
  • 人教版地理八年级下册:第8章 西北地区 第二节《干旱的宝地—塔里木盆地》课时练2.docx人教版地理八年级下册:第8章 西北地区 第二节《干旱的宝地—塔里木盆地》课时练2.docx
  • 人教版地理八年级下册:第8章 第一节自然特征与农业教案2.docx人教版地理八年级下册:第8章 第一节自然特征与农业教案2.docx
  • 人教版地理八年级下册:第8章 第一节自然特征与农业教案2.docx人教版地理八年级下册:第8章 第一节自然特征与农业教案2.docx
  • 人教版地理八年级下册:第7章第三节“东方明珠”——香港和澳门 教案2.docx人教版地理八年级下册:第7章第三节“东方明珠”——香港和澳门 教案2.docx
  • 人教版地理八年级下册:第7章第三节“东方明珠”——香港和澳门 教案2.docx人教版地理八年级下册:第7章第三节“东方明珠”——香港和澳门 教案2.docx
  • 人教版地理八年级下册:第7章 南方地区 第四节《祖国的神圣领土—台湾省》课时练.docx人教版地理八年级下册:第7章 南方地区 第四节《祖国的神圣领土—台湾省》课时练.docx
  • 人教版地理八年级下册:第7章 南方地区 第二节《“鱼米之乡”—长江三角洲地区》课时练.docx人教版地理八年级下册:第7章 南方地区 第二节《“鱼米之乡”—长江三角洲地区》课时练.docx
  • 人教版地理八年级下册:第6章第二节 “白山黑水”—东北三省教案3.docx人教版地理八年级下册:第6章第二节 “白山黑水”—东北三省教案3.docx
  • 人教版地理八年级下册:第6章第二节 “白山黑水”—东北三省教案3.docx人教版地理八年级下册:第6章第二节 “白山黑水”—东北三省教案3.docx
  • 人教版地理八年级下册:第6章 北方地区 第四节《祖国的首都—北京》课时练.docx人教版地理八年级下册:第6章 北方地区 第四节《祖国的首都—北京》课时练.docx
  • 人教版地理八年级下册 期中检测卷(3).docx人教版地理八年级下册 期中检测卷(3).docx
  • 人教版地理八年级下册 期中检测卷(2).docx人教版地理八年级下册 期中检测卷(2).docx
  • 人教版地理八年级下册 9.2高原湿地——三江源地区预习案.docx人教版地理八年级下册 9.2高原湿地——三江源地区预习案.docx
  • 人教版地理八年级下册 9.1自然特征与农业预习案.docx人教版地理八年级下册 9.1自然特征与农业预习案.docx
  • 人教版地理八年级下册 8.2干旱的宝地——塔里木盆地预习检测.docx人教版地理八年级下册 8.2干旱的宝地——塔里木盆地预习检测.docx
  • 人教版地理八年级下册 8.2干旱的宝地——塔里木盆地预习案.docx人教版地理八年级下册 8.2干旱的宝地——塔里木盆地预习案.docx
  • 人教版地理八年级下册 8.1自然特征与农业预习检测.docx人教版地理八年级下册 8.1自然特征与农业预习检测.docx
  • 人教版地理八年级下册 8.1自然特征与农业预习案.docx人教版地理八年级下册 8.1自然特征与农业预习案.docx
  • 人教版地理八年级下册 7.4祖国的神圣领土──台湾省预习检测.docx人教版地理八年级下册 7.4祖国的神圣领土──台湾省预习检测.docx
  • 人教版地理八年级下册 7.4祖国的神圣领土──台湾省预习案.docx人教版地理八年级下册 7.4祖国的神圣领土──台湾省预习案.docx
  • 人教版地理八年级下册 7.2“鱼米之乡”——长江三角洲地区预习检测.docx人教版地理八年级下册 7.2“鱼米之乡”——长江三角洲地区预习检测.docx
  • 人教版地理八年级下册 7.2“鱼米之乡”——长江三角洲地区预习案.docx人教版地理八年级下册 7.2“鱼米之乡”——长江三角洲地区预习案.docx
  • 人教版地理八年级下册 6.4祖国的首都——北京预习检测.docx人教版地理八年级下册 6.4祖国的首都——北京预习检测.docx
  • 人教版地理八年级下册 6.4祖国的首都——北京预习案.docx人教版地理八年级下册 6.4祖国的首都——北京预习案.docx
  • 人教版地理八年级下册 6.3世界最大的黄土堆积区——黄土高原预习检测.docx人教版地理八年级下册 6.3世界最大的黄土堆积区——黄土高原预习检测.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1