分享
分享赚钱 收藏 举报 版权申诉 / 35

类型专题19 等腰三角形(解析版).docx

  • 上传人:a****
  • 文档编号:833046
  • 上传时间:2025-12-16
  • 格式:DOCX
  • 页数:35
  • 大小:1.35MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题19 等腰三角形解析版 专题 19 等腰三角形 解析
    资源描述:

    1、专题19 等腰三角形 【专题目录】技巧1:等腰三角形中四种常用作辅助线的方法技巧2:巧用特殊角构造含30角的直角三角形技巧3:分类讨论思想在等腰三角形中的应用【题型】一、等腰三角形的定义【题型】二、根据等边对等角求角度【题型】三、根据三线合一求解【题型】四、根据等角对等边证明等腰三角形【题型】五、根据等角对等边求边长【题型】六、等腰三角形性质与判定的综合【题型】七、等边三角形的性质【题型】八、含30角的直角三角形【考纲要求】1.了解等腰三角形的有关概念,掌握其性质及判定2.了解等边三角形的有关概念,掌握其性质及判定3.掌握线段中垂线的性质及判定【考点总结】一、等腰三角形等腰三角形等腰三角形概念

    2、有两边相等的三角形角等腰三角形。等腰三角形性质1:等腰三角形的两个底角相等(简写成“等边对等角”)2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。(三线合一)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).【考点总结】二、等边三角形等边三角形等边三角形概念三条边都相等的三角形,叫等边三角形。它是特殊的等腰三角形。等边三角形性质和判定(1)等边三角形的三个内角都相等,并且每一个角都等于60。(2)三个角都相等的三角形是等边三角形。(3)有一个角是60的等腰三角形是等边三角形。(4)在直角三角形中,如果一个锐角等于30,那么它所对的直角

    3、边等于斜边的一半。 (补充:(1)三角形三个内角的平分线交于一点,并且这一点到三边的距离等。(2)三角形三个边的中垂线交于一点,并且这一点到三个顶点的距离相等。(3)常用辅助线:三线合一;过中点做平行线【考点总结】三、直角三角形直角三角形直角三角形性质直角三角形的两锐角互余;直角三角形30角所对的直角边等于斜边的一半;直角三角形中,斜边上的 中线长等于斜边长的一半.直角三角形判定有一个角是直角的三角形是直角三角形.勾股定理及其逆定理勾股定理:直角三角形中,两直角边的平方和等于斜边的平方;勾股定理的逆定理:若一个三角形中有两边的平方和等于第三边的平方,则这个三角形是直角三角形.【技巧归纳】技巧1

    4、:等腰三角形中四种常用作辅助线的方法【类型】一、作“三线”中的“一线”1如图,在ABC中,ABAC,D是BC的中点,过点A作EFBC,且AEAF.求证:DEDF.【类型】二、作平行线法2如图,在ABC中,ABAC,点P从点B出发沿线段BA移动,同时,点Q从点C出发沿线段AC的延长线移动,点P,Q移动的速度相同,PQ与直线BC相交于点D.(1)如图,当点P为AB的中点时,求证:PDQD.(2)如图,过点P作直线BC的垂线,垂足为E,当P,Q在移动的过程中,线段BE,ED,CD中是否存在长度保持不变的线段?请说明理由【类型】三、截长补短法3如图,在ABC中,ABAC,D是ABC外一点,且ABD60

    5、,ACD60.求证:BDDCAB.来源:学|科|网Z|X|X|K【类型】四、加倍折半法4如图,在ABC中,BAC120,ADBC于D,且ABBDDC,求C的度数5如图,CE,CB分别是ABC,ADC的中线,且ABAC.求证:CD2CE.参考答案1证明:如图,连接AD.ABAC,BDCD,ADBC.EFBC,ADEF.AEAF,AD垂直平分EF.DEDF.2(1)证明:如图,过点P作PFAC交BC于F.点P和点Q同时出发,且速度相同,BPCQ.PFAQ,PFBACB,DPFDQC.又ABAC,BACB,BPFB,BPFP,FPCQ.在PFD和QCD中,DPFDQC,PDFQDC,FPCQ,PFD

    6、QCD(AAS),PDQD.(2)解:线段ED的长度保持不变理由如下:如图,过点P作PFAC交BC于F.由(1)知PBPF.PEBF,BEEF.由(1)知PFDQCD,FDCD,EDEFFDBECDBC,线段ED的长度保持不变3证明:如图,延长BD至E,使BEAB,连接CE,AE.ABE60,BEAB,ABE为等边三角形AEB60,ABAE.又ACD60,ACDAEB.ABAC,ABAE,ACAE.ACEAEC.DCEDEC.DCDE.ABBEBDDEBDDC,即BDDCAB.4解:在DC上截取DEBD,连接AE,ADBC,BDDE,AD是线段BE的垂直平分线,ABAE,BAEB.ABBDDC

    7、,DEBD,ABDECD.而CDDEEC,ABEC,AEEC.EACC,可设EACCx,AEB为AEC的外角,AEBEACC2x,B2x,BAE1802x2x1804x.BAC120,BAEEAC120,即1804xx120,解得x20,则C20.5证明:如图,延长CE到点F,使EFCE,连接FB,则CF2CE.CE是ABC的中线,AEBE.在BEF和AEC中,BEFAEC(SAS)EBFA,BFAC.又ABAC,ABCACB.CBDAACBEBFABCCBF.CB是ADC的中线,ABBD.又ABAC,ACBF,BFBD.在CBF与CBD中,CBFCBD(SAS)CFCD.CD2CE.技巧2:

    8、巧用特殊角构造含30角的直角三角形【类型】一、直接运用含30角的直角三角形的性质1如图,在ABC中,C90,B30,AD是ABC的角平分线,DEAB,垂足为E,DE1,则BC()A. B2 C3 D.22如图,已知ABC中,ABAC,C30,ABAD,AD4 cm.求BC的长【类型】二、连线段构造含30角的直角三角形3如图,在ABC中,ABAC,BAC120,D为BC的中点,DEAC于E,AE8,求CE的长4如图,已知在ABC中,ABAC,A120,DE垂直平分AB于点D,交BC于点E.求证:CE2BE.【类型】三、延长两边构造含30角的直角三角形5如图,四边形ABCD中,AD4,BC1,A3

    9、0,B90,ADC120,求CD的长【类型】四、作垂线构造含30角的直角三角形6如图,四边形ABCD中,B90,DCAB,AC平分DAB,DAB30.求证:AD2BC.参考答案1C2解:ABAC,C30,BC30.又ABAD,ADB60.又ADBCCAD,CAD30C.CDAD4 cm.ABAD,B30,BD2AD8 cm.BCBDCD12 cm.3解:连接AD,ABAC,D为BC的中点,ADBC,BADCADBAC12060.在RtADE中,EAD60,ADE30,AD2AE16.在ABC中,ABAC,BAC120.BC30,AC2AD21632.CEACAE32824.4证明:如图,连接A

    10、E.ABAC,BAC120,BC30.DE垂直平分AB,BEAE.BAEB30.EAC1203090.又C30,CE2AE.又BEAE,CE2BE.5解:延长AD,BC交于点E.A30,B90,E60.又ADC120,EDC18012060.DCE是等边三角形设CDCEDEa,则有2(1a)4a,解得a2.CD的长为2.6证明:过点C作CEAD交AD的延长线于E.DCAB,DAB30,CDE30.在RtCDE中,CDE30,CD2CE.又AC平分DAB,DACBAC,又DCAB,BACDCA,DACDCA,ADCD.又CEAE,CBAB,AC平分DAB,BCCE,AD2BC.7证明:过点B作B

    11、EAD交AD的延长线于点E,则DEB90 .BAD30,BEAB.ADAC,DAC90,DEBDAC.又BDCD,BDECDA,BEDCAD,BEAC,ACAB.点拨:由结论ACAB和条件BAD30,就想到能否找到或构造直角三角形,而显然图中没有含30角的直角三角形,所以过点B作BEAD交AD的延长线于点E,这样就得到了直角三角形ABE,这是解决本题的关键技巧3:分类讨论思想在等腰三角形中的应用【类型】一、当顶角或底角不确定时,分类讨论1若等腰三角形中有一个角等于40,则这个等腰三角形的顶角度数为()A40B100C40或70D40或1002已知等腰三角形ABC中,ADBC于D,且ADBC,则

    12、等腰三角形ABC的底角的度数为()A45 B75 C45或75 D653若等腰三角形的一个外角为64,则底角的度数为_【类型】二、当底和腰不确定时,分类讨论4已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A8或10B8C10D6或125等腰三角形的两边长分别为7和9,则其周长为_6若实数x,y满足|x4|(y8)20,则以x,y的值为边长的等腰三角形的周长为_【类型】三、当高的位置关系不确定时,分类讨论7等腰三角形一腰上的高与另一边的夹角为25,求这个三角形的各个内角的度数【类型】四、由腰的垂直平分线引起的分类讨论8在三角形ABC中,ABAC,AB边上的垂直平分线与AC所在

    13、的直线相交所得的锐角为40,求底角B的度数【类型】五、由腰上的中线引起的分类讨论9等腰三角形ABC的底边BC长为5 cm,一腰上的中线BD把其分为周长差为3 cm的两部分求腰长【类型】六、点的位置不确定引起的分类讨论10如图,在RtABC中,ACB90,AB2BC,在直线BC或AC上取一点P,使得PAB为等腰三角形,则符合条件的点P共有()A7个 B6个 C5个 D4个11如图,在ABC中,BCABAC,ACB40,如果D,E是直线AB上的两点,且ADAC,BEBC,求DCE的度数参考答案1D2.C3.324.C5.23或256.207解:设ABAC,BDAC;(1)高与底边的夹角为25时,高

    14、一定在ABC的内部,如图,DBC25,C90DBC902565,ABCC65,A18026550.(2)当高与另一腰的夹角为25时,如图,高在ABC的内部时,ABD25,A90ABD65,CABC(180A)257.5;如图,高在ABC的外部时,ABD25,BAD90ABD902565,BAC18065115,ABCC(180115)232.5,故三角形各个内角的度数为:65,65,50或65,57.5,57.5或115,32.5,32.5.点拨:由于题目中的“另一边”没有指明是“腰”还是“底边”,因此必须进行分类讨论,另外,还要结合图形,分高在三角形内还是在三角形外8解:此题分两种情况:(1

    15、)如图,AB边的垂直平分线与AC边交于点D,ADE40,则A50,ABAC,B(18050)265.(2)如图,AB边的垂直平分线与CA的延长线交于点D,ADE40,则DAE50,BAC130.ABAC,B(180130)225.故B的大小为65或25.9分析:由于题目中没有指明是“(ABAD)(BCCD)”为3 cm,还是“(BCCD)(ABAD)”为3 cm,因此必须分两种情况讨论解:BD为AC边上的中线,ADCD,(1)当(ABAD)(BCCD)3 cm时,有ABBC3 cm,BC5 cm,AB538(cm);(2)当(BCCD)(ABAD)3 cm时,有BCAB3 cm,BC5 cm,

    16、AB532(cm),但是当AB2 cm时,三边长分别为2 cm,2 cm,5 cm.而225,不能构成三角形,舍去故腰长为8 cm.来源:学*科*网Z*X*X*K10B11解:(1)当点D、E在点A的同侧,且都在BA的延长线上时,如图,BEBC,BEC(180ABC)2,ADAC,ADC(180DAC)2BAC2,DCEBECADC,DCE(180ABC)2BAC2(180ABCBAC)2ACB240220.(2)当点D、E在点A的同侧,且点D在D的位置,E在E的位置时,如图,与(1)类似地也可以求得DCEACB220.(3)当点D、E在点A的两侧,且E点在E的位置时,如图,BEBC,BEC(

    17、180CBE)2ABC2,ADAC,ADC(180DAC)2BAC2,又DCE180(BECADC),DCE180(ABCBAC)2180(180ACB)290ACB290402110.(4)当点D、E在点A的两侧,且点D在D的位置时,如图,ADAC,ADC(180BAC)2,BEBC,BEC(180ABC)2,DCE180(DECEDC)180(BECADC)180(180ABC)2(180BAC)2(BACABC)2(180ACB)2(18040)270.综上所述,DCE的度数为20或110或70.【题型讲解】【题型】一、等腰三角形的定义例1、已知等腰三角形的一边长等于4,一边长等于9,则

    18、它的周长为( )A9B17或22C17D22【答案】D【提示】分类讨论腰为4和腰为9,再应用三角形的三边关系进行取舍即可【详解】解:分两种情况:当腰为4时,所以不能构成三角形;当腰为9时,所以能构成三角形,周长是:故选:D【题型】二、根据等边对等角求角度例2、如图,在ABC中,A40,ABAC,点D在AC边上,以CB,CD为边作BCDE,则E的度数为( )A40B50C60D70【答案】D【提示】先根据等腰三角形的性质和三角形的内角和定理求出C的度数,再根据平行四边形的性质解答即可【详解】解:A40,ABAC,ABC=C=70,四边形ABCD是平行四边形,E=C=70故选:D【题型】三、根据三

    19、线合一求解例3、如图,已知AB=AC,BC=6,尺规作图痕迹可求出BD=( )A2B3C4D5【答案】B【提示】根据尺规作图的方法步骤判断即可【详解】由作图痕迹可知AD为BAC的角平分线,而AB=AC,由等腰三角形的三线合一知D为BC重点,BD=3,故选B【题型】四、根据等角对等边证明等腰三角形例4、下列能断定ABC为等腰三角形的是()AA=40,B=50BA=2B=70CA=40,B=70DAB=3,BC=6,周长为14【答案】C【提示】根据三角形内角和计算角的度数,判断三角形中是否有相等的角;根据三角形的周长计算是否有相等的边即可判断.【详解】A.C=1804050=90,没有相等的角,则

    20、不是等腰三角形,本选项错误;B、A=2B=70,B=35,C=75,没有相等的角,则不是等腰三角形,本选项错误;C、C=1804070=70,有相等的角,则是等腰三角形,本选项正确;D、AB=3,BC=6,周长为14,AC=1463=5,没有相等的边,则不是等腰三角形,本选项错误;故选C 【题型】五、根据等角对等边求边长例5、如图,将矩形折叠,使点和点重合,折痕为,与交于点若,则的长为( )ABCD【答案】C【提示】先证明再求解利用轴对称可得答案【详解】解:由对折可得: 矩形, BC=8 由对折得: 故选C【题型】六、等腰三角形性质与判定的综合例6、如图,三条笔直公路两两相交,交点分别为、,测

    21、得,千米,求、两点间的距离(参考数据:,结果精确到1千米)【答案】、两点间的距离约为11千米【提示】如图(见解析),先根据直角三角形的性质、勾股定理可求出CD、AD的长,再根据等腰直角三角形的判定与性质可得BD的长,然后根据线段的和差即可得【详解】如图,过点C作于点D在中,千米(千米),(千米)在中,是等腰直角三角形千米(千米)答:、两点间的距离约为11千米【题型】七、等边三角形的性质例7、如图,面积为1的等边三角形中,分别是,的中点,则的面积是( )A1BCD【答案】D【提示】根据题意可以判断四个小三角形是全等三角形,即可判断一个的面积是【详解】分别是,的中点,且ABC是等边三角形,ADFD

    22、BEFECDFE,DEF的面积是故选D【题型】八、含30角的直角三角形例8、如图,在中,将绕点逆时针旋转得到,使点落在边上,连接,则的长度是( )ABCD【答案】B【提示】由旋转的性质可知,进而得出为等边三角形,进而求出【详解】解:由直角三角形中,30角所对的直角边等于斜边的一半可知,cm,又CAB=90-ABC=90-30=60,由旋转的性质可知:,且,为等边三角形,故选:B等腰三角形(达标训练)一、单选题1如图,在ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE4,EC2,则BC的长是()A2B4C6D8【答案】C【分析】根据线段的垂直平分线的性质得到EBEA4,结合

    23、图形计算,得到答案【详解】解:DE是AB的垂直平分线,AE4,EBEA4,BCEBEC426,故选:C【点睛】本题考查的是线段的垂直平分线的性质,解题的关键是掌握线段的垂直平分线上的点到线段的两个端点的距离相等2如图,在中,用图示尺规作图的方法在边上确定一点则的周长为()A12B14C16D21【答案】B【分析】根据题意得:尺规作图的方法所作的直线是 的垂直平分线,可得 ,从而得到的周长为 ,即可求解【详解】解:根据题意得:尺规作图的方法所作的直线是 的垂直平分线, , ,的周长为 故选:B【点睛】本题主要考查了尺规作图作已知线段的垂直平分线,线段垂直平分线的性质,熟练掌握线段垂直平分线上的点

    24、到线段两端的距离相等是解题的关键3下列命题,错误的是()A有一个锐角和斜边对应相等的两个直角三角形全等B如果A和B是对顶角,那么ABC等腰三角形两腰上的高相等D三角形三边垂直平分线的交点到三角形三边的距离相等【答案】D【分析】利用全等三角形的判定、对顶角的性质、等腰三角形的性质及垂直平分线的性质分别判断后即可确定正确的选项.【详解】解:A、有一个锐角和斜边对应相等的两个直角三角形全等,正确,不符合题意;B、如果A和B是对顶角,那么AB,正确,不符合题意;C、等腰三角形两腰上的高相等,正确,不符合题意;D、三角形三边垂直平分线的交点到三角形三顶点的距离相等,故原命题错误,符合题意故选:D【点睛】

    25、考查了命题与定理的知识,解题的关键是了解全等三角形的判定、对顶角的性质、等腰三角形的性质及垂直平分线的性质,属于基础性知识,比较简单4如图,点,在上,添加一个条件,不一定能证明的是()ABCD【答案】D【分析】根据全等三角形的判定定理判断即可【详解】A:,在和中,正确,故本选项错误;B:,在和中,正确,故本选项错误;C:在和中,正确,故本选项错误;D:根据,不能推出,错误,故本选项正确故选D【点睛】本题考查全等三角形的判定的应用,平行线的性质熟练掌握全等三角形的判定定理是解本题的关键5如图,矩形ABCD的对角线AC的垂直平分线分别交AD、AC、BC于点E、O、F,若,则EF的长为()A8B15

    26、C16D24【答案】B【分析】根据矩形的性质得到AO=CO,AOE=COF,根据平行线的性质得出EAO=FCO,根据ASA推出AEOCFO,由全等得到OE=OF,推出四边形是平行四边形,再根据EFAC即可推出四边形是菱形,根据垂直平分线的性质得出AF=CF,根据勾股定理即可得出结论【详解】连接AF,CE,EF是AC的垂直平分线,AO=CO,AOE=COF=90,四边形ABCD是矩形,ADBC,EAO=FCO,在AEO和CFO中,,AEOCFO(ASA),OE=OF,又OA=OC,四边形AECF是平行四边形,EFAC,平行四边形AECF是菱形,AE=CE,设AE=CE=x,EF是AC的垂直平分线

    27、,AE=CE=x,DE=16-x,在RtCDE中,,,解得,AE=,=10,EF=2OE=15,故选:B【点睛】本题考查了矩形的性质,菱形的判定和性质,勾股定理,全等三角形的判定和性质,证得四边形AECF是菱形是解题的关键二、填空题6如图,在中,平分,点到的距离为5.6,则_【答案】【分析】过D作DEAB于E,根据角平分线性质得出CDDE,再求出BD长,即可得出BC的长【详解】解:如图,过D作DEAB于E,C90,CDAC,AD平分BAC,CDDE,D到AB的距离等于5.6cm,CDDE5.6cm,又BD2CD,BD11.2cm,BC5.611.2cm,故答案为:【点睛】本题主要考查了角平分线

    28、性质的应用,解题时注意:角平分线上的点到角两边的距离相等7如图,在中,于点E,于点D,请你添加一个条件_,使(填一个即可)【答案】(答案不唯一)【分析】两个三角形全等已具备的条件是:,根据三角形全等的判定方法即可确定添加的条件【详解】解:添加的条件是, , ,在和中,故答案为:(答案不唯一)【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定定理是解决问题的关键三、解答题8如图,E、F分别是矩形ABCD对角线上的两点,且求证:【答案】见解析;【分析】根据矩形ABCD的性质得出, ,再根据 ,用可直接证明出,即可证明出 【详解】证明:是矩形, ,,在和中 , 【点睛】本题主要考查了矩形的性质

    29、,全等三角形性质和判定,熟练掌握矩形的性质和全等三角形的判定是解决问题的关键等腰三角形(提升测评)一、单选题1如图,点D、E分别为ABC的边AB、AC的中点,点F在DE的延长线上,CFBA,若ADE的面积为2,则四边形BCFD的面积为()A10B8C6D4【答案】B【分析】根据三角形中位线定理得到DEBC,DE=BC,证明;根据相似三角形的性质计算(相似三角形的面积比等于相似比的平方),可求得SABC的面积;根据三角形全等的判定和性质定理,证明ADECFE,可得SADE=SCFE,从而可得S四边形BCFD= SABC即可【详解】解:D,E分别是ABC的边AB,AC的中点DE是ABC的中位线AE

    30、=CE ,DEBC,DE=BCSADE=SADE =2SABC=8又CFBAA=FCE在ADE和CFE中,ADECFE(ASA)SADE=SCFESADE+ S四边形BCED =SCFE +S四边形BCEDS四边形BCFD= SABC=8故选:B【点睛】本题考查的是三角形中位线定理、相以三角形的判定和性质,全等三角形的判定与性质,掌握相似三角形的面积比等于相似比的平方是解题的关键2如图,RtABC中,C90,BD平分ABC交AC于点D,点E为AB的中点,若AB12,CD3,则DBE的面积为()A10B12C9D6【答案】C【分析】如图:过D作DFAB于F,然后根据角平分线的性质可得DF=CD=

    31、3,然后再根据中点的定义求得BE的长,最后根据三角形的面积公式求解即可【详解】解:如图:过D作DFAB于F,C90,BD平分ABC交AC于点D,DF=CD=3点E为AB的中点, AB12BE=AB=6DBE的面积为 故选:C【点睛】本题主要考查了角平分线定理、中点的定义、三角形的高等知识点,作出DBE的高并运用角平分线定理求出成为解答本题的关键3如图,RtABC中,C=90,用尺规作图法作出射线AE,AE交BC于点D,CD=5,P为AB上一动点,则PD的最小值为()A2B3C4D5【答案】D【分析】当DPAB时,根据垂线段最短可知,此时DP的值最小再根据角平分线的性质定理可得DP=CD解决问题

    32、;【详解】解:当DPAB时,根据垂线段最短可知,此时DP的值最小由作图可知:AE平分BAC,C=90,DCAC,DPAB,DP=CD=5,PD的最小值为5,故选:D【点睛】本题考查角平分线的性质定理,垂线段最短,基本作图等知识,解题的关键是学会利用垂线段最短解决最短问题4如图,在正方形ABCD中,E,F分别为BC,CD的中点,点G在CD边上,AG交BF于点H,连接下列结论:;,其中正确的结论有()A4个B3个C2个D1个【答案】B【分析】先证明AHEBCF(AAS),即可判断,由三角形的中位线定理可证GEBF,即可判断,由勾股定理可求BF的长,即可求sinABFsinBFC,即可判断,由相似三

    33、角形的性质可求FH,CH,AO的长,即可求出,即可判断【详解】解:如图,设BF与AE的交点为O,设AB4a,四边形ABCD是正方形,ABBCCDAD4a,ABCBCD90,E,F分别为BC,CD的中点,CFDF2aCEBE,ABEBCF(SAS),BAECBF,BFAE,AEBBFC,ABF+CBF90ABF+BAE,AOB90AOH,又BAEGAE,AOAO,AOHAOB(ASA),AHAB,AOBAOH90,AE垂直平分BH,BEEH,ABEAHE90,AHEBCF90,AHABBC,GAEBAEBCF,AHEBCF(AAS),故正确;AHAB,AHBABH,ABCD,ABFCFB,CFB

    34、AHBCHF,FGGH,HEBECE,CHEECH,EHBEBH,CHEECHEHBEBH2CHE2EHB180,BHCCHEEHB 90,GHCGCH,CGGH,FGGCGHa,又CEBE,GEBF,故正确;,sinABFsinBFC,故正确;CHFBCF90,CFHCFB,CFHBFC, ,sinABF,FGGC,故错误,故选:B【点睛】本题是四边形综合题,考查了相似三角形的判定和性质,正方形的性质,全等三角形的判定和性质,锐角三角函数,勾股定理,三角形中位线定理等知识,灵活运用这些性质解决问题是解题的关键二、填空题5如图,在边长为的正方形中,点、分别是边、上的动点且,连接、,则的最小值为

    35、_【答案】【分析】连接AE,利用转化线段BF得到,则通过作点A关于BC的对称点H,连接DH交BC于点E,利用勾股定理求出DH的长即可【详解】解:连接,如图,四边形是正方形,又, 所以最小值等于最小值作点关于的对称点点,如图,连接,则A、B、三点共线,连接,与的交点即为所求的点根据对称性可知,所以 在中,最小值为故答案为: 【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质、最短距离问题,一般求两条线段最短距离问题,都转化为一条线段6正方形的边长为,E为的中点,连接,过点作交于点,垂足为,则_【答案】【分析】先证明BFCCED,得到DECF2,CEBF,利用勾股定理可求的长,由面积法可求

    36、【详解】解:正方形的边长为,E为的中点,DE2,CGF90,(AAS),EGCECG,故答案为:【点睛】此题考查了正方形的性质,全等三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造全等三角形是解题的关键三、解答题7如图,在矩形中,的平分线交于点,交的延长线于点,点为的中点,连接、(1)试判断的形状,并说明理由;(2)求的度数【答案】(1)是等腰直角三角形,理由见解析(2)45【分析】(1)根据矩形的性质和角平分线的定义及平行线的性质证得,再根据等角对等边得到即可得到结论;(2)根据矩形性质和等腰直角三角形的性质证得,再根据全等三角形的判定与性质证明得到,则有,进而求解即可(1)解:是等腰

    37、直角三角形;理由如下:四边形是矩形,平分,又,是等腰直角三角形;(2)解:四边形是矩形,即,点为的中点,在和中,又,是等腰直角三角形【点睛】本题考查矩形的性质、等腰直角三角形的判定与性质、直角三角形的斜边中线性质、全等三角形的判定与性质、平行线的性质、角平分线的定义等知识,熟练掌握矩形的性质和等腰直角三角形的判定与性质,证明是解答的关键8如图,在四边形中,点在边上,作交线段于点,连接,求证:【答案】证明见解析【分析】根据题意得到四边形是平行四边形,根据平行四边形的性质得到,根据平行线的性质及等腰三角形的性质推出,即可利用证明【详解】,四边形是平行四边形,在和中,【点睛】此题考查了平行四边形的判定与性质、全等三角形的判定,熟记平行四边形的判定与性质是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题19 等腰三角形(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-833046.html
    相关资源 更多
  • 内蒙古自治区呼和浩特市2022-2023学年高一上学期期末数学试题.docx内蒙古自治区呼和浩特市2022-2023学年高一上学期期末数学试题.docx
  • 内蒙古自治区呼和浩特市2022-2023学年高一上学期期中数学试题 WORD版含答案.docx内蒙古自治区呼和浩特市2022-2023学年高一上学期期中数学试题 WORD版含答案.docx
  • 内蒙古自治区呼伦贝尔阿荣旗阿伦中学九年级上学期化学第一次月考试卷(解析版).docx内蒙古自治区呼伦贝尔阿荣旗阿伦中学九年级上学期化学第一次月考试卷(解析版).docx
  • 内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理2.5自由落体运动导学案新人教版必修1.docx内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理2.5自由落体运动导学案新人教版必修1.docx
  • 内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理2.4匀变速直线运动的位移与速度的关系教案新人教版必修1.docx内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理2.4匀变速直线运动的位移与速度的关系教案新人教版必修1.docx
  • 内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理2.4匀变速直线运动的位移与速度的关系导学案新人教版必修1.docx内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理2.4匀变速直线运动的位移与速度的关系导学案新人教版必修1.docx
  • 内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理2.3匀变速直线运动的位移与时间的关系教案新人教版必修1.docx内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理2.3匀变速直线运动的位移与时间的关系教案新人教版必修1.docx
  • 内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理2.3匀变速直线运动的位移与时间的关系导学案新人教版必修1.docx内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理2.3匀变速直线运动的位移与时间的关系导学案新人教版必修1.docx
  • 内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理2.2匀变速直线运动的速度与时间的关系教案新人教版必修1.docx内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理2.2匀变速直线运动的速度与时间的关系教案新人教版必修1.docx
  • 内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理2.2匀变速直线运动的速度与时间的关系导学案新人教版必修1.docx内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理2.2匀变速直线运动的速度与时间的关系导学案新人教版必修1.docx
  • 内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理2.1实验:探究小车速度随时间变化的规律教案新人教版必修1.docx内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理2.1实验:探究小车速度随时间变化的规律教案新人教版必修1.docx
  • 内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理1.5速度变化快慢的描述_加速度教案新人教版必修1.docx内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理1.5速度变化快慢的描述_加速度教案新人教版必修1.docx
  • 内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理1.5速度变化快慢的描述_加速度导学案新人教版必修1.docx内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理1.5速度变化快慢的描述_加速度导学案新人教版必修1.docx
  • 内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理1.4实验:用打点计时器测速度教案新人教版必修1.docx内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理1.4实验:用打点计时器测速度教案新人教版必修1.docx
  • 内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理1.4实验:用打点计时器测速度导学案新人教版必修1.docx内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理1.4实验:用打点计时器测速度导学案新人教版必修1.docx
  • 内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理1.3运动快慢的描述_速度教案新人教版必修1.docx内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理1.3运动快慢的描述_速度教案新人教版必修1.docx
  • 内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理1.3运动快慢的描述_速度导学案新人教版必修1.docx内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理1.3运动快慢的描述_速度导学案新人教版必修1.docx
  • 内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理1.1质点参考系和坐标系教案新人教版必修1.docx内蒙古自治区呼伦贝尔市鄂伦春旗大杨树三中高中物理1.1质点参考系和坐标系教案新人教版必修1.docx
  • 内蒙古自治区包头市第四中学2021-2022学年高一上学期期中数学试题(解析版).docx内蒙古自治区包头市第四中学2021-2022学年高一上学期期中数学试题(解析版).docx
  • 内蒙古自治区优质高中联考2023-2024学年高二上学期11月期中数学试题(Word版附解析).docx内蒙古自治区优质高中联考2023-2024学年高二上学期11月期中数学试题(Word版附解析).docx
  • 内蒙古自治区优质高中联考2023-2024学年高二上学期11月期中化学试题(Word版附答案).docx内蒙古自治区优质高中联考2023-2024学年高二上学期11月期中化学试题(Word版附答案).docx
  • 内蒙古自治区乌兰察布市集宁新世纪中学2022-2023学年高一上学期月考物理试题WORD版含解析.docx内蒙古自治区乌兰察布市集宁新世纪中学2022-2023学年高一上学期月考物理试题WORD版含解析.docx
  • 内蒙古自治区乌兰察布市集宁区第二中学2022-2023学年高三上学期期中物理试题(Word版附解析).docx内蒙古自治区乌兰察布市集宁区第二中学2022-2023学年高三上学期期中物理试题(Word版附解析).docx
  • 内蒙古自治区乌兰察布市集宁区第二中学2022-2023学年高三上学期期中数学试题(Word版附解析).docx内蒙古自治区乌兰察布市集宁区第二中学2022-2023学年高三上学期期中数学试题(Word版附解析).docx
  • 内蒙古自治区乌兰察布市集宁区第二中学2022-2023学年高一上学期期中考试英语试题(Word版附解析).docx内蒙古自治区乌兰察布市集宁区第二中学2022-2023学年高一上学期期中考试英语试题(Word版附解析).docx
  • 内蒙古自治区乌兰察布市集宁区第二中学2022-2023学年高一上学期期中考试数学试题(Word版附解析).docx内蒙古自治区乌兰察布市集宁区第二中学2022-2023学年高一上学期期中考试数学试题(Word版附解析).docx
  • 内蒙古自治区乌兰察布市集宁区第二中学2022-2023学年高一上学期期中考试历史试题(Word版附解析).docx内蒙古自治区乌兰察布市集宁区第二中学2022-2023学年高一上学期期中考试历史试题(Word版附解析).docx
  • 内蒙古自治区乌兰察布市集宁区第二中学2020-2021学年高一上学期期中考试英语试卷 WORD版含答案.docx内蒙古自治区乌兰察布市集宁区第二中学2020-2021学年高一上学期期中考试英语试卷 WORD版含答案.docx
  • 内蒙古自治区乌兰察布市集宁区第二中学2020-2021学年高一上学期期中考试物理试卷 WORD版含答案.docx内蒙古自治区乌兰察布市集宁区第二中学2020-2021学年高一上学期期中考试物理试卷 WORD版含答案.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1