专题2.9 二次函数中的最值问题【八大题型】(北师大版)(原卷版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八大题型 专题2.9 二次函数中的最值问题【八大题型】北师大版原卷版 专题 2.9 二次 函数 中的 问题 八大 题型 北师大 原卷版
- 资源描述:
-
1、专题2.9 二次函数中的最值问题【八大题型】【北师大版】【题型1 已知二次函数的对称轴及自变量取值范围求最值】1【题型2 已知含参二次函数的对称轴及最值求参】2【题型3 已知二次函数解析式及最值求自变量取值范围】2【题型4 二次函数中求线段最值】3【题型5 二次函数中求线段和差最值】5【题型6 二次函数中求周长最值】7【题型7 二次函数中求面积最值】9【题型8 二次函数在新定义中求最值】10【知识点1 二次函数的最值】1.对于二次函数在上的最值问题(其中a、b、c、m和n均为定值,表示y的最大值,表示y的最小值):(1)若自变量x为全体实数,如图,函数在时,取到最小值,无最大值(2)若,如图,
2、当,;当,(3)若,如图,当,;当,(4)若,如图,当,;当,2.对于二次函数,在(m,n为参数)条件下,函数的最值需要分别讨论m,n与的大小【题型1 已知二次函数的对称轴及自变量取值范围求最值】【例1】(2022秋开福区校级期中)二次函数yx22x+m当3x3时,则y的最大值为 (用含m的式子表示)【变式1-1】(2022秋河西区期末)当x2时,二次函数yx22x3有()A最大值3B最小值3C最大值4D最小值4【变式1-2】(2022秋上城区期末)已知二次函数yx2,当1x2时,求函数y的最小值和最大值小王的解答过程如下:解:当x1时,y1;当x2时,y4;所以函数y的最小值为1,最大值为4
3、小王的解答过程正确吗?如果不正确,写出正确的解答过程【变式1-3】(2022安徽模拟)已知二次函数yx2+bxc的图象经过点(3,0),且对称轴为直线x1(1)求b+c的值(2)当4x3时,求y的最大值(3)平移抛物线yx2+bxc,使其顶点始终在二次函数y2x2x1上,求平移后所得抛物线与y轴交点纵坐标的最小值【题型2 已知含参二次函数的对称轴及最值求参】【例2】(2022鹿城区校级二模)已知二次函数ymx24mx(m为不等于0的常数),当2x3时,函数y的最小值为2,则m的值为()A16B-16或12C-16或23D16或2【变式2-1】(2022秋龙口市期末)已知关于x的二次函数yx2+
4、2x+2a+3,当0x1时,y的最大值为10,则a的值为 【变式2-2】(2022灌南县二模)已知二次函数yax22ax+c,当1x2时,y有最小值7,最大值11,则a+c的值为()A3B9C293D253【变式2-3】(2022青山区二模)已知二次函数yx2+bx+c,当x0时,函数的最小值为3,当x0时,函数的最小值为2,则b的值为()A6B2C2D3【题型3 已知二次函数解析式及最值求自变量取值范围】【例3】(2022宁阳县一模)当0xm时,函数yx2+4x3的最小值为3,最大值为1,则m的取值范围是()A0m2B0m4C2m4Dm2【变式3-1】(2022龙港市模拟)已知二次函数yx2
5、4x+5,当mxm+3时,求y的最小值(用含m的代数式表示)【变式3-2】(2022庐阳区一模)设抛物线yax2+bx3a,其中a、b为实数,a0,且经过(3,0)(1)求抛物线的顶点坐标(用含a的代数式表示);(2)若a2,当t2xt时,函数的最大值是6,求t的值;(3)点A坐标为(0,4),将点A向右平移3个单位长度,得到点B若抛物线与线段AB有两个公共点,求a的取值范围【变式3-3】(2022文成县一模)已知抛物线yx2+bx+c与x轴的一个交点为(1,0),且经过点(2,c)(1)求抛物线与x轴的另一个交点坐标(2)当tx2t时,函数的最大值为M,最小值为N,若MN3,求t的值【题型4
6、 二次函数中求线段最值】【例4】(2022黔东南州二模)如图,抛物线yax2+bx2与x轴交于点A(2,0)、B(1,0),与y轴交于点C(1)求抛物线的解析式;(2)点M是抛物线对称轴上的动点,求MB+MC的最小值;(3)若点P是直线AC下方抛物线上的动点,过点P作PQAC于点Q,线段PQ是否存在最大值?若存在,求出此时点P的坐标;若不存在,请说明理由【变式4-1】(2022太原一模)综合与实践如图,抛物线yx2+2x8与x轴交于A,B两点(点A在点B左侧),与y轴交于点C点D在直线AC下方的抛物线上运动,过点D作y轴的平行线交AC于点E(1)求直线AC的函数表达式;(2)求线段DE的最大值
7、;(3)当点F在抛物线的对称轴上运动,以点A,C,F为顶点的三角形是直角三角形时,直接写出点F的坐标【变式4-2】(2022平果市模拟)如图,抛物线yx2+bx+c经过点A(3,0),B(0,3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M设点P的横坐标为t(1)求抛物线的解析式;(2)若点P在第一象限,连接AM,BM当线段PM最长时,求ABM的面积;(3)是否存在这样的点P,使以点P,M,B,O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由【变式4-3】(2022春九龙坡区校级期末)抛物线yax2+bx+4与x轴交于A(4,0)和B(1,0)两
8、点,与y轴交于点C,点P是直线AC上方的抛物线上一动点求抛物线的解析式;(1)过点P作PEAC于点E,求22PE的最大值及此时点P的坐标;(2)将抛物线yax2+bx+4向右平移4个单位,得到新抛物线y,点M是抛物线y的对称轴上一点在x轴上确定一点N,使得以点A、C、M、N为顶点的四边形是平行四边形,直接写出所有符合条件的点N的坐标【题型5 二次函数中求线段和差最值】【例5】(2022春良庆区校级期末)如图,已知抛物线的解析式为y=-34x2-94x+3,抛物线与x轴交于点A和点B,与y轴交点于点C(1)请分别求出点A、B、C的坐标和抛物线的对称轴;(2)连接AC、BC,将ABC绕点B顺时针旋
9、转90,点A、C的对应点分别为M、N,求点M、N的坐标;(3)若点P为该抛物线上一动点,在(2)的条件下,请求出使|NPBP|最大时点的坐标,并请直接写出|NPBP|的最大值【变式5-1】(2022濠江区一模)已知二次函数yx2+(m+1)x+4m+9(1)对于任意m,二次函数都会经过一个定点,求此定点的坐标;(2)当m3时,如图,二次函数与y轴的交点为M,顶点为N若点P是x轴上的动点,求PNPM的最大值及对应的点P的坐标;设点Q是二次函数上的动点,点H是直线MN上的动点,是否存在点Q,使得OQH是以点Q为直角顶点的等腰RtOQH?若存在,求出点Q的坐标;若不存在,请说明理由【变式5-2】(2
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2022春八年级英语下册 Unit 8 Save Our World Lesson 45 Let’s Sort Garbage习题课件(新版)冀教版.pptx
