专题训练(一) 求二次函数的表达式.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 训练 二次 函数 表达式
- 资源描述:
-
1、专题训练(一)求二次函数的表达式 类型一设一般式求二次函数表达式若给出抛物线上任意三点,通常可设一般式yax2bxc(a0)1如图1ZT1,二次函数yx2bxc的图象过点B(0,2),它与反比例函数y的图象相交于点A(m,4),则这个二次函数的表达式为()图1ZT1Ayx2x2Byx2x2Cyx2x2Dyx2x22二次函数yax2bxc的变量x与变量y的部分对应值如下表:x321015y705897(1)求此二次函数的表达式;(2)写出该抛物线的顶点坐标和对称轴3已知:在平面直角坐标系xOy中,抛物线yax2bxc经过点A(3,0),B(2,3),C(0,3)(1)求抛物线的函数表达式;(2)
2、设D是抛物线上的一点,且点D的横坐标为2,求AOD的面积类型二设顶点式求二次函数表达式若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式:ya(xm)2k(a0),其中点(m,k)为抛物线的顶点坐标,对称轴为直线xm.4若二次函数的图象的顶点坐标为(2,1),且过点(0,3),则该二次函数的表达式是()Ay(x2)21 By(x2)21Cy(x2)21 Dy(x2)215已知二次函数的图象经过点(4,3),并且当x3时,有最大值4.求该二次函数的表达式6已知抛物线yax2bxc与x轴交于点A(3,0),对称轴为直线x1,顶点M到x轴的距离为2,求此抛物线的函数表达式7设抛物线yax2bxc(
3、a0)过A(0,2),B(4,3),C三点,其中点C在直线x2上,且点C到抛物线的对称轴的距离为1,求抛物线的函数表达式8如图1ZT2,二次函数yax2bxc(a0)的图象交x轴于A,B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4)(1)求二次函数的表达式和直线BD的表达式;(2)P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长的最大值图1ZT2类型三设交点式求二次函数表达式若给出抛物线与x轴的交点,通常可设交点式:ya(xx1)(xx2)(a0),其中x1,x2是抛物线与x轴的交点的横坐标9已知抛物线yax2bxc与x轴的两
4、个交点坐标为(1,0),(3,0),其形状大小、开口方向均与抛物线y2x2相同,则该抛物线的函数表达式为()Ay2x2x3 By2x24x5Cy2x24x8 Dy2x24x610已知二次函数yax2bxc的图象过A(1,4),B(5,0)两点,它的对称轴为直线x2,那么这个二次函数的表达式是_112019百色经过A(4,0),B(2,0),C(0,3)三点的抛物线的函数表达式是_12已知二次函数的图象经过点A(1,0),B(3,0),C(4,10),求该二次函数的表达式13已知二次函数的图象经过点(3,8),对称轴为直线x2,抛物线与x轴的两个交点之间的距离为6.求该二次函数的表达式14已知一
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2021部编版语文四年级上册阅读能力抽测卷.pdf
