全面透析电磁感应中的三大类.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全面 透析 电磁感应 中的 大类
- 资源描述:
-
1、全面透析电磁感应中的三大类“杆导轨”模型电磁感应中的杆导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:模型一单杆电阻导轨模型初建模型母题如图所示,相距为L的两条足够长的光滑平行金属导轨MN、PQ与水平面的夹角为,N、Q两点间接有阻值为R的电阻。整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向下。将质量为m、阻值也为R的金属杆cd垂直放在导轨上,杆cd由静止释放,下滑距离x时达到最大速度。重力加速度为g,导轨电阻不计,杆与导轨接触良好。求:(1)杆cd下滑的最大加
2、速度和最大速度;(2)上述过程中,杆上产生的热量。 解析(1)设杆cd下滑到某位置时速度为v, 思路点拨则杆产生的感应电动势EBLv,回路中的感应电流I杆所受的安培力FBIL根据牛顿第二定律有mgsin ma当速度v0时,杆的加速度最大,最大加速度agsin ,方向沿导轨平面向下当杆的加速度a0时,速度最大,最大速度vm,方向沿导轨平面向下。(2)杆cd从开始运动到达到最大速度过程中,根据能量守恒定律得mgxsin Q总mvm2又Q杆Q总,所以Q杆mgxsin 。答案(1)gsin ,方向沿导轨平面向下,方向沿导轨平面向下(2)mgxsin 内化模型单杆电阻导轨四种题型剖析题型一(v00)题型
3、二(v00)题型三(v00)题型四(v00)说明杆cd以一定初速度v0在光滑水平轨道上滑动,质量为m,电阻不计,两导轨间距为L轨道水平光滑,杆cd质量为m,电阻不计,两导轨间距为L,拉力F恒定倾斜轨道光滑,倾角为,杆cd质量为m,两导轨间距为L竖直轨道光滑,杆cd质量为m,两导轨间距为L示意图力学观点杆以速度v切割磁感线产生感应电动势EBLv,电流I,安培力FBIL。杆做减速运动:vFa,当v0时,a0,杆保持静止开始时a,杆cd速度v感应电动势EBLvI安培力F安BIL,由FF安ma知a,当a0时,v最大,vm开始时agsin ,杆cd速度v感应电动势EBLvI安培力F安BIL,由mgsin
4、 F安ma知a,当a0时,v最大,vm开始时ag,杆cd速度v感应电动势EBLvI安培力F安BIL,由mgF安ma知a,当a0时,v最大,vm图像观点能量观点动能全部转化为内能:Qmv02F做的功一部分转化为杆的动能,一部分转化为内能:WFQmvm2重力做的功(或减少的重力势能)一部分转化为杆的动能,一部分转化为内能:WGQmvm2重力做的功(或减少的重力势能)一部分转化为杆的动能,一部分转化为内能:WGQmvm2 应用模型变式此题若已知金属杆与导轨之间的动摩擦因数为。现用沿导轨平面向上的恒定外力F作用在金属杆cd上,使cd由静止开始沿导轨向上运动,求cd的最大加速度和最大速度。解析:分析金属
5、杆运动时的受力情况可知,金属杆受重力、导轨平面的支持力、拉力、摩擦力和安培力五个力的作用,沿斜面方向由牛顿第二定律有Fmgsin F安fma又F安BIL,I,所以F安BILfNmgcos 故Fmgsin mgcos ma当速度v0时,杆的加速度最大,最大加速度amgsin gcos ,方向沿导轨平面向上当杆的加速度a0时,速度最大,vm。模型二单杆电容器(或电源)导轨模型初建模型母题如图所示,在竖直向下的磁感应强度为B的匀强磁场中,两根足够长的平行光滑金属轨道MN、PQ固定在水平面内,相距为L。一质量为m的导体棒cd垂直于MN、PQ放在轨道上,与轨道接触良好。轨道和导体棒的电阻均不计。(1)如
6、图1所示,若轨道左端M、P间接一阻值为R的电阻,导体棒在拉力F的作用下以速度v沿轨道做匀速运动。请通过公式推导证明:在任意一段时间t内,拉力F所做的功与电路获得的电能相等。(2)如图2所示,若轨道左端接一电动势为E、内阻为r的电源和一阻值未知的电阻,闭合开关S,导体棒从静止开始运动,经过一段时间后,导体棒达到最大速度vm,求此时电源的输出功率。(3)如图3所示,若轨道左端接一电容器,电容器的电容为C,导体棒在水平拉力的作用下从静止开始向右运动。电容器两极板间电势差随时间变化的图像如图4所示,已知t1时刻电容器两极板间的电势差为U1。求导体棒运动过程中受到的水平拉力大小。思路点拨(1)导体棒匀速
7、运动受力平衡求出拉力做的功。导体棒切割磁感线产生感应电动势产生感应电流求出回路的电能。(2)闭合开关S导体棒变加速运动产生的感应电动势不断增大达到电源的路端电压棒中没有电流由此可求出电源与电阻所在回路的电流电源的输出功率。(3)导体棒在外力作用下运动回路中形成充电电流导体棒还受安培力的作用由牛顿第二定律列式分析。解析(1)导体棒切割磁感线,EBLv导体棒做匀速运动,FF安 又F安BIL,其中I在任意一段时间t内,拉力F所做的功WFvtF安vtt电路获得的电能EqEEItt可见,在任意一段时间t内,拉力F所做的功与电路获得的电能相等。(2)导体棒达到最大速度vm时,棒中没有电流,电源的路端电压U
8、BLvm电源与电阻所在回路的电流I 电源的输出功率PUI。(3)感应电动势与电容器两极板间的电势差相等BLvU由电容器的Ut图可知Ut,导体棒的速度随时间变化的关系为vt可知导体棒做匀加速直线运动,其加速度a,由C和I,得I由牛顿第二定律有FBILma可得F。内化模型单杆电容器(或电源)导轨四种题型剖析题型一(v00)题型二(v00)题型三(v00)题型四(v00)说明轨道水平光滑,杆cd质量为m,电阻不计,两导轨间距为L轨道水平光滑,杆cd质量为m,电阻不计,两导轨间距为L,拉力F恒定倾斜轨道光滑,杆cd质量为m,电阻不计,两导轨间距为L竖直轨道光滑,杆cd质量为m,电阻为R,两导轨间距为L
9、示意图力学观点S闭合,杆cd受安培力F,a,杆cd速度v感应电动势E感BLvI安培力FBIL加速度a,当E感E时,v最大,且vm开始时a,杆cd速度vEBLv,经过t速度为vv,EBL(vv),qC(EE)CBLv,ICBLa,F安CB2L2a,a,所以杆匀加速运动开始时agsin ,杆cd速度vEBLv,经过t速度为vv,EBL(vv),qC(EE)CBLv,ICBLa,F安CB2L2a,mgsin F安ma,a,所以杆匀加速运动开始时ag,杆cd速度vEBLv,经过t速度为vv,EBL(vv),qC(EE)CBLv,ICBLa,F安CB2L2a,mgF安ma,a,所以杆匀加速运动图像观点能
10、量观点电源输出的电能转化为动能:W电mvm2F做的功一部分转化为动能,一部分转化为电场能:WFmv2EC重力做的功一部分转化为动能,一部分转化为电场能:WGmv2EC重力做的功一部分转化为动能,一部分转化为电场能:WGmv2EC应用模型变式母题第(3)问变成,图3中导体棒在恒定水平外力F作用下,从静止开始运动,导轨与棒间的动摩擦因数为,写出导体棒的速度大小随时间变化的关系式。解析:导体棒由静止开始做加速运动,电容器所带电荷量不断增加,电路中将形成充电电流,设某时刻棒的速度为v,则感应电动势为EBLv电容器所带电荷量为QCECBLv再经过很短一段时间t,电容器两端电压的增量和电荷量的增量分别为U
11、EBLv QCUCBLv流过导体棒的电流ICBLa导体棒受到的安培力f1BILCB2L2a 导体棒所受到的摩擦力f2mg由牛顿第二定律得Ff1f2ma 联立以上各式解得a显然导体棒做匀加速直线运动,所以导体棒的速度大小随时间变化的关系式为vt。模型三双杆导轨模型初建模型母题(1)如图1所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度为B的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计,导轨间的距离为l,两根质量均为m、电阻均为R的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直。在t0时刻,两杆都处于静止状态。现有一与导轨平行,大小恒为F的力作用于金属杆甲上,使
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2022届高考语文复习古代诗歌鉴赏虚实结合课件36张.pptx
