创新方案高考数学复习精编(人教新课标)212导数在研究函数中的应用与生活中的优化问题举例doc高中数学.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新 方案 高考 数学 复习 精编 新课 212 导数 研究 函数 中的 应用 生活 优化 问题 举例 doc 高中数学
- 资源描述:
-
1、第二章 第十二节 导数在研究函数中的应用与生活中的优化问题举例题组一导数与函数的单调性1.(2022广东高考)函数f(x)(x3)ex的单调递增区间是说明 ()A(,2) B(0,3) C(1,4) D(2,)解析:f(x)(x3)ex,f(x)ex(x2)0,x2.f(x)的单调递增区间为(2,)答案:D2.假设函数h(x)2x在(1,)上是增函数,那么实数k的取值范围是 ()A2,) B2,) C(,2 D(,2解析:因为h(x)2,所以h(x)20在(1,)上恒成立,即k2x2在(1,)上恒成立,所以k2,)答案:A3已知函数yax与y在(0,)上都是减函数,那么函数yax3bx25的单
2、调减区间为_解析:根据题意a0,b0.由yax3bx25,得y3ax22bx,令y0,可得x0或x,故所求减区间为(,)和(0,)答案:(,)和(0,)4设函数f(x)x3ax29x1(a0)假设曲线yf(x)的斜率最小的切线与直线12xy6平行,求:(1)a的值;(2)函数f(x)的单调区间解:(1)因f(x)x3ax29x1,所以f(x)3x22ax9329.即当x时,f(x)取得最小值9.因斜率最小的切线与12xy6平行,即该切线的斜率为12,所以912,即a29.解得a3,由题设a0,故f(x)在(,1)上为增函数;当x(1,3)时,f(x)0,故f(x)在(3,)上为增函数由此可见,
3、函数f(x)的单调递增区间为(,1)和(3,),单调递减区间为(1,3)题组二导数与函数的极值和最值5.(文)函数f(x)x3ax23x9,已知f(x)在x3时取得极值,那么a ()A2 B3 C4 D5解析:因为f(x)x3ax23x9,所以f(x)3x22ax3,由题意有f(3)0,所以3(3)22a(3)30,由此解得a5.答案:D(理)设aR,假设函数yexax,xR有大于零的极值点,那么 ()Aa1 Ba1 Ca Da解析:由y(exax)exa0得exa,即xln(a)0a1a1.答案:A6.假设函数f(x)x33xa有3个不同的零点,那么实数a的取值范围是 ()A(2,2) B2
4、,2 C(,1) D(1,)解析:由f(x)3x233(x1)(x1),且当x1时,f(x)0;当1x1时,f(x)0;当x1时,f(x)0.所以当x1时函数f(x)有极大值,当x1时函数f(x)有极小值要使函数f(x)有3个不同的零点,只需满足解之得2a2.答案:A7函数ysin2xx,x,的最大值是_,最小值是_解析:y2cos2x10,x.而f(),f(),端点f(),f(),所以y的最大值是,最小值是.答案:8(文)已知函数f(x)x3ax2bxc,曲线yf(x)在点x1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为,假设x时,yf(x)有极值,(1)求a,b,c的值;(
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-930464.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
