初三-第15讲-反比例函数与反比例函数图像(提高)-教案.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初三 15 反比例 函数 图像 提高 教案
- 资源描述:
-
1、学科教师辅导讲义学员编号: 年 级:九年级 课 时 数:3学员姓名:辅导科目:数学学科教师: 授课主题第15讲-反比例函数与反比例函数图像授课类型T同步课堂P实战演练S归纳总结教学目标理解反比例函数的概念,能判断两个变量之间的关系是否是反比例函数关系;能根据已知条件确定反比例函数的表达式及作出函数图像;掌握函数图像的性质与系数k的几何意义。授课日期及时段T(Textbook-Based)同步课堂体系搭建 一、知识框架 二、知识概念 (一)反比例与反比例函数 1、反比例 如果两个变量的每一组对应值的乘积是一个非零常数,那么这两个变量成反比例,用数学符号语言记为xy=k,或 (k0)。 成反比例的
2、关系式不一定是反比例函数,但是反比例函数中的两个变量必成反比例关系。 2、反比例函数 (1)定义 一般地,形如(为常数,)的函数称为反比例函数。还可以写成。也可以写成xyk, 它表明在反比例函数中自变量x与其对应函数值y之积,总等于已知常数k. (2)反比例函数解析式的特征 等号左边是函数,等号右边是一个分式。分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1. 比例系数 自变量的取值为一切非零实数。 函数的取值是一切非零实数。 (3)待定系数法 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出)。 (二)反比例函数的图像与性质 1、图像的画法
3、:描点法 列表(应以O为中心,沿O的两边分别取三对或以上互为相反的数) 描点(有小到大的顺序) 连线(从左到右光滑的曲线)2、图像特征:(1)反比例函数的图像是双曲线,(为常数,)中自变量,函数值,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。(2)反比例函数的图像是是轴对称图形(对称轴是或),也是中心对称图形。(3)系数的几何意义:过双曲线 ()上任意引轴轴的垂线,所得矩形面积为。典例分析 考点一:反比关系与反比例函数定义例1、下列函数关系中是反比例函数的是( ) A.等边三角形面积S与边长的关系 B.直角三角形两锐角A与B的关系 C.长方形面积一定
4、时,长与宽的关系 D.等腰三角形顶角A与底角B的关系【解析】 C例2、下列函数是不是反比例函数,为什么?(1) (2) (3)xy21 (4) (5)(6) (7)yx4 (8)【解析】(2)(3)(5)(8)是反比例函数。例3、当m取什么值时,函数是反比例函数?【解析】m的取值必须满足两个条件,即m20且3m21;解得m2考点二:反比例函数的表达式例1、若y与x成反比例,且x3时,y7,则求y与x的函数关系式。【解析】利用待定系数法来确定k的值,由于只有一个系数k,只需一组x、y的值就可以求出。y= -。例2、已知函数yy1y2,y1与x成正比例,y2与x成反比例,且当x1时,y4;当x2时
5、,y5 (1)求y与x的函数关系式 (2)当x2时,求函数y的值【解析】设y1k1x(k10),(k20),则,代入数值求得k12,k22,则。考点三:反比例函数的图像与性质例1、反比例函数(m为常数)当x0时,y随x的增大而增大,则m的取值范围是() Am0 B C Dm【解析】根据题意得:12m0,解得:m故选:C例2、如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1y2时,x的取值范围是() Ax2或x2 Bx2或0x2 C2x0或0x2 D2x0或x2【解析】反比例函数与正比例函数的图象均关于原点对称,A、B两点关于原点对称,点A
6、的横坐标为2,点B的横坐标为2,故选D例3、关于x的函数y=k(x+1)和y=(k0)在同一坐标系中的图象大致是() A B C D【解析】D考点四:系数“k”的几何意义(初步)例1、如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=() A3 B4 C5 D6【解析】根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,S1+S2=4+412=6故选:D例2、如图,A、B是双曲线y=上的两点,过A点作ACx轴,交OB于D点,垂足为C若ADO的面积为1,D为OB的中点,则k的值为() A B C3 D4【解析】过点B作BEx轴于点E,D为OB的
7、中点,CD是OBE的中位线,即CD=BE设A(x,),则B(2x,),CD=,AD=,ADO的面积为1,ADOC=1,()x=1,解得k=,故选:BP(Practice-Oriented)实战演练实战演练 课堂狙击1、下列表达式中,表示是的反比例函数的是( ) . 是常数, A.B. C.D.【解析】 D.2、如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是() A两条直角边成正比例 B两条直角边成反比例 C一条直角边与斜边成正比例 D一条直角边与斜边成反比例【解析】B3、若是反比例函数,则、的取值是 ( ) A. B. C . D. 【解析】B4、函数是反比例函数,则
8、m的值是() Am=1 Bm=1 Cm= Dm=1【解析】m10,m22=1故选:D5、在同一直角坐标系中,一次函数y=kxk与反比例函数y=(k0)的图象大致是()ABCD【解析】A6、己知反比例函数y=,当1x3时,y的取值范围是() A0yl B1y2 C2y6 Dy6【解析】C7、如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x0)上的一个动点,PBy轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会() A逐渐增大 B不变 C逐渐减小 D先增大后减小【解析】设点P的坐标为(x,),PBy轴于点B,点A是x轴正半轴上的一个定点,四边形OAPB是个直
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
