北师大版八年级数学上册第一章勾股定理专题训练试卷(详解版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 八年 级数 上册 第一章 勾股定理 专题 训练 试卷 详解
- 资源描述:
-
1、北师大版八年级数学上册第一章勾股定理专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,两直角边,现将AC沿AD折叠,使点C落在斜边AB上的点E处,则CD长为()ABCD2、有一个直角三角
2、形的两边长分别为3和4,则第三边的长为()A5BCD5或3、如图,中,将折叠,使点C与的中点D重合,折痕交于点M,交于点N,则线段的长为().ABC3D4、如图,已知点E在正方形ABCD内,满足AEB=90,AE=6,BE=8,则阴影部分的面积是()A48B60C76D805、下面图形能够验证勾股定理的有()个A4个B3个C2个D1个6、在ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A10B8C6或10D8或107、如图,有一只小鸟从小树顶飞到大树顶上,它飞行的最短路程是()A13米B12米C5米D米8、下面各图中,不能证明勾股定理正确性的是()ABCD9、九章算
3、术是我国古代数学名著,记载着这样一个问题:“今有池方一丈,葭生其中央,出水一尺引葭赴岸,适与岸齐问水深、葭长各几何?”大意是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面水的深度与这根芦苇的长度分别是多少?设芦苇的长度为x尺,则可列方程为()Ax2+52(x+1)2Bx2+102(x+1)2Cx252(x1)2Dx2102(x1)210、在直角三角形中,若勾为3,股为4,则弦为()A5B6C7D8第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、我国古代有这样一道数学问题:“
4、枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是_尺.2、在ABC中,C90,AB10,AC8,则BC的长为_3、把一根长12厘米的木棒,从一端起顺次截下3厘米和5厘米的两段,用得到的三根木棒首尾依次相接,摆成的三角形形状是_4、如图,折叠直角三角形纸片ABC,使得两个锐角顶点A、C重合,设折痕为DE,若AB=4,BC=3,则ADC的周长是_5、如图,在网格中,每个小正方形的边长均为1点A
5、、B,C都在格点上,若BD是ABC的高,则BD的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,点是内一点,把绕点顺时针旋转得到,且,.(1)判断的形状,并说明理由;(2)求的度数.2、已知m0,若3m+2,4m+8,5m+8是一组勾股数,求m的值3、如图,CEAB于点E,BDAC于点D,ABAC(1)求证:ABDACE(2)连接BC,若AD6,CD4,求ABC的面积4、勾股定理的证明方法是多样的,其中“面积法”是常用的方法小丽发现:当四个全等的直角三角形如图摆放时,可以用“面积法”来证明勾股定理请写出勾股定理的内容,并利用给定的图形进行证明5、如图所示,ABC的两条高AD,BE
6、相交于点F,AC=BC(1)求证:ADCBEC(2)若CD=1,BE=2,求线段AC的长.-参考答案-一、单选题1、A【解析】【分析】先根据勾股定理求得AB的长,再根据折叠的性质求得AE,BE的长,从而利用勾股定理可求得CD的长【详解】解:AC6cm,BC8cm,C90,AB(cm),由折叠的性质得:AEAC6cm,AEDC90,BE10cm6cm4cm,BED90,设CDx,则BDBCCD8x,在RtDEB中,BE2DE2BD2,即42x2(8x)2,解得:x3,CD3cm,故选:A【考点】本题考查了折叠的性质,勾股定理等知识;熟记折叠性质并表示出RtDEB的三边,然后利用勾股定理列出方程是
7、解题的关键2、D【解析】【分析】分4是直角边、4是斜边两种情况考虑,再根据勾股定理计算即可【详解】解:当4是直角边时,斜边=5;当4是斜边时,另一条直角边=;故选:D【考点】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c23、D【解析】【分析】由折叠的性质可得DN=CN,根据勾股定理可求DN的长,即可得出结果【详解】解:D是AB中点,AB=4,AD=BD=2,将ABC折叠,使点C与AB的中点D重合,DN=CN,BN=BC-CN=6-DN,在RtDBN中,DN2=BN2+DB2,DN2=(6-DN)2+4,DN=,CN=DN=,故选:D【考点】本题
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
山西省运城市康杰中学高二语文苏教版教学课件 必修3:秋水(PPT).ppt
