基础强化人教版九年级数学上册第二十五章概率初步综合练习试卷(解析版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基础 强化 人教版 九年级 数学 上册 第二 十五 概率 初步 综合 练习 试卷 解析
- 资源描述:
-
1、人教版九年级数学上册第二十五章概率初步综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是()
2、ABCD2、如图,在的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB(阴影部分)的概率是()ABCD3、甲、乙是两个不透明的纸箱,甲中有三张标有数字,的卡片,乙中有三张标有数字,的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为,从乙中任取一张卡片,将其数字记为若,能使关于的一元二次方程有两个不相等的实数根,则甲获胜;否则乙获胜则乙获胜的概率为()ABCD4、从下列命题中,随
3、机抽取一个是真命题的概率是()(1)无理数都是无限小数;(2)因式分解;(3)棱长是的正方体的表面展开图的周长一定是;(4)弧长是,面积是的扇形的圆心角是ABCD15、如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45其中合理的是()ABCD6、乒乓球比赛以11分为1局,水平相当的甲、乙两人
4、进行乒乓球比赛,在一局比赛中,甲已经得了8分,乙只得了2分,对这局比赛的结果进行预判,下列说法正确的是()A甲获胜的可能性比乙大B乙获胜的可能性比甲大C甲、乙获胜的可能性一样大D无法判断7、我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以闹息“等宽曲线”除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形图2是等宽的勒洛三角形和圆形滚木的截面图()有如下四个结论:勒洛三角形是中心对称图形;使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动;图2中,等边三角形
5、的边长为,则勒洛三角形的周长为;图3中,在中随机以一点,则该点取自勒洛三角形部分的概率为,上述结论中,所有正确结论的序号是()ABCD8、投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A两枚骰子向上一面的点数之和大于1B两枚骰子向上一面的点数之和等于1C两枚骰子向上一面的点数之和大于12D两枚骰子向上一面的点数之和等于129、在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为()ABCD10、某林业局将一种树苗移植成活的情况绘制成如下统计图,由此可估计这种树苗移植成活的概率约为()A0.95B0.90C0.85D0.80第卷(非选择
6、题 70分)二、填空题(5小题,每小题4分,共计20分)1、小明制作了张卡片,上面分别写了一个条件:;从中随机抽取一张卡片,能判定是菱形的概率是_2、不透明袋子中装有10个球,其中有3个黄球、5个红球、2个黑球,这些球除颜色外无其他差别从袋子中随机取出1个球,则它是黄球的概率是_3、一布袋里装有4个红球、5个黄球、6个黑球,这些球除颜色外其余都相同,那么从这个布袋里摸出一个黄球的概率为_4、一个不透明的袋子里装有12个球,其中有9个红球,2个黑球,1个白球,它们除颜色外都相同,若从袋子中随机摸出1个球,则它是黑球的概率为_5、在一个不透明的袋子中装有除颜色外完全相同的3个白球、1个红球,从中随
7、机摸出1个球,记下颜色,放回搅匀,再随机摸出一个球,则两次摸到的球颜色相同的概率是_三、解答题(5小题,每小题10分,共计50分)1、如图,现有一个可以自由转动的圆形转盘,被分成6个面积相等的扇形区域,指针的位置固定转盘游戏规则如下:花费5元可以随意转动一次转盘,当转盘停止时,指针指向哪个区域,就按照这个区域所示的数字相应地顺时针跳几格,然后按照如表格所示的说明确定奖金数额例如,当指针指向区域“2”时,就向前跳两格到区域“4”按奖金说明,区域“4”所示的奖金为5元,就可得奖金5元区域123456奖金3元1元20元5元10元2元(1)在一次转盘游戏中,求获得2元奖金的概率;(2)请你用概率知识判
8、断这个转盘游戏是否公平?若不公平,请改变转盘每个区域对应的奖金数额,使其公平2、某学校为了解全校学生对电视节目(新闻、体育、动画、娱乐、戏曲)的喜爱情况,从全校学生中随机抽取部分学生进行问卷调查,并把调查结果绘制成两幅不完整的统计图请根据以上信息,解答下列问题(1)这次被调查的学生共有多少名?(2)请将条形统计图补充完整;(3)若该校有3000名学生,估计全校学生中喜欢体育节目的约有多少名?(4)该校宣传部需要宣传干事,现决定从喜欢新闻节目的甲、乙、丙、丁四名同学中选取2名,用树状图或列表法求恰好选中甲、乙两位同学的概率3、我们来定义下面两种数:(一)平方和数:若一个三位数或者三位以上的整数分
9、拆成最左边、中间、最右边三个数后满足:中间数=(最左边数)2+(最右边数)2,我们就称该整数为平方和数例如:对于整数251它中间的数字是5,最左边数是2,最右边数是1是一个平方和数又例如:对于整数3254,它的中间数是25,最左边数是3,最右边数是4,是一个平方和数当然152和4253这两个数也是平方和数;(二)双倍积数:若一个三位数或者三位以上的整数分拆成最左边、中间、最右边三个数后满足:中间数最左边数最右边数,我们就称该整数为双倍积数例如:对于整数163,它的中间数是6,最左边数是1,最右边数是3,是一个双倍积数,又例如:对于整数3305,它的中间数是30,最左边数是3,最右边数是5,是一
10、个双倍积数,当然361和5303这两个数也是双倍积数注意:在下面的问题中,我们统一用字母表示一个整数分拆出来的最左边数,用字母表示该整数分拆出来的最右边数,请根据上述定义完成下面问题:(1)若一个三位整数为平方和数,且十位数为4,则该三位数为_;若一个三位整数为双倍积数,且十位数字为 6 ,则该三位数为_;若一个整数既为平方和数,又是双倍积数,则应满足的数量关系为_;(2)若(即这是个最左边数为,中间数为565,最右边数为的整数,以下类同)是一个平方和数,是一个双倍积数,求的值(3)从所有三位整数中任选一个数为双倍积数的概率4、为丰富学生课余活动,明德中学组建了A体育类、B美术类、C音乐类和D
11、其它类四类学生活动社团,要求每人必须参加且只参加一类活动学校随机抽取八年级(1)班全体学生进行调查,以了解学生参团情况根据调查结果绘制了两幅不完整的统计图(如图所示)请结合统计图中的信息,解决下列问题:(1)八年级(1)班学生总人数是 人,补全条形统计图,扇形统计图中区域C所对应的扇形的圆心角的度数为 ;(2)明德中学共有学生2500人,请估算该校参与体育类和美术类社团的学生总人数;(3)校园艺术节到了,学校将从符合条件的4名社团学生(男女各2名)中随机选择两名学生担任开幕式主持人,请用列表或画树状图的方法,求恰好选中1名男生和1名女生的概率5、对一批衬衣进行抽检,统计合格衬衣的件数,获得如下
12、频数表抽取件数(件)1001502005008001000合格频数88141176445720900合格频率_0.940.880.890.90_(1)完成上表(2)估计任意抽一件衬衣是合格品的概率(3)估计出售1200件衬衣,其中次品大约有几件-参考答案-一、单选题1、C【解析】【详解】用A,B,C分别表示给九年级的三辆车,画树状图得:共有9种等可能的结果,小明与小红同车的有3种情况,小明与小红同车的概率是:点睛:此题主要考查了用列表法或树状图求概率,解题关键是用字母或甲乙丙分别表示给九年级的三辆车,然后根据题意画树状图,再由树状图求得所有等可能的结果与小明与小红同车的情况,然后利用概率公式求
13、解即可求得答案2、A【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值【详解】解:由图可知,总面积为:56=30,阴影部分面积为:,飞镖击中扇形OAB(阴影部分)的概率是,故选:A【考点】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件发生的概率3、C【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得乙获胜的概率.【详解】(1)关于的一元二次方程有两个
14、不相等的实数根,=b2-4a0,画树状图如下:由图可知,共有种等可能的结果,分别是a=,b=1,则=-10;a=,b=2,则=20;a=,b=1,则=0;a=,b=3,则=80;a=,b=2,则=30;a=1,b=1,则=-30;a=1,b=2,则=0;其中能使乙获胜的有种结果数,乙获胜的概率为,故选C【考点】本题考查的是用树状图法求概率,树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验4、C【解析】【分析】分别判断各命题的真假,再利用概率公式求解.【详解】解:(1)无理数都是无限小数,是真命题,(2)因式分解,是真命题,(3)棱长是的正方体的表面展开图的周长一定
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
