2014届高三人教A版数学(理)一轮复习课件:第10章 第9节 离散型随机变量的均值与方差、正态分布.ppt
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2014届高三人教A版数学理一轮复习课件:第10章 第9节 离散型随机变量的均值与方差、正态分布 2014 三人 数学 一轮 复习 课件 10 离散 随机变量 均值 方差 正态分布
- 资源描述:
-
1、菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)第九节 离散型随机变量的均值与方差、正态分布菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)数学期望菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)3两点分布与二项分布的均值、方差均值方差变量X服从两点分布E(X)_D(X)_XB(n,p)E(X)_ D(X)_p(1p)np(1p)pnp菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专
2、用)上方xx1菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)(4)正态总体三个基本概率值P(X)_;P(2X2)_;P(3X3)_0.682 60.954 40.997 4菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)1随机变量的均值、方差与样本均值、方差的关系是怎样的?【提示】随机变量的均值、方差是一个常数,样本均值、方差是一个变量,随观测次数的增加或样本容量的增加,样本的均值、方差趋于随机变量的均值与方差2若XN(0,100),YN(0,81),你能比较P(X1)与P(Y1)的大小吗?【提示】因为10081,所以X对应
3、的正态曲线“矮胖”,Y对应的正态曲线“瘦高”,并且两曲线的对称轴相同,故P(X1)P(Y1)菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)1(人教A版教材习题改编)已知随机变量服从正态分布N(2,2),P(4)0.84,则P(0)()A0.16B0.32C0.68D0.84【解析】P(4)0.84,2,P(0)P(4)10.840.16.【答案】A菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)3已知X的分布列为【答案】A菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)3(2013珠海模拟)
4、某射手射击所得环数的分布列如下:已知的期望E8.9,则y的值为_【答案】0.478910Px0.10.3y菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)4马老师从课本上抄录一个随机变量的概率分布列如下表:请小牛同学计算的数学期望尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同据此,小牛给出了正确答案E_x123P(x)?!?菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)【解析】设P(1)x,则P(3)x,由分布列性质,P(2)12x,因此E1x2(12x)3x2.【答案】2菜单课后作业典例
5、探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)已知随机变量服从正态分布N(2,2),且P(4)0.8,则P(02)()A0.6B0.4C0.3D0.2【思路点拨】根据正态曲线的对称性求解菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)【答案】C菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)1求解本题关键是明确正态曲线关于x2对称,且区间0,4关于x2对称2关于正态曲线在某个区间内取值的概率求法(1)熟记P(X),P(2X2),P(3X3)的值(2)充分利用正态曲线的对称性和曲线与x轴之间面积为1.菜单课后
6、作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)若在本例中,条件改为“已知随机变量N(3,1),且P(24)0.682 6,”求P(4)的值菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)(2013揭阳模拟)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖(每次游戏结束后将球放回原箱)(1)求在1次游戏中,摸出3个白球的概率;获奖的概率(2)求在2次游戏中获奖次数X的分布列及数学期望E(X)与方差
7、D(X)离散型随机变量的均值与方差菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)【思路点拨】(1)获奖则摸出2个白球或摸出3个白球,利用互斥事件概率加法不难求解;(2)在2次游戏中,获奖的次数X服从二项分布,进而可求分布列与数学期望菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)所以X的分布列是菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)1本题求解的关键在于求一次游戏中获奖的概率,要正确利用互斥事件和相互独
8、立事件概率计算公式2求离散型随机变量的均值与方差的方法:(1)先求随机变量的分布列,然后利用均值与方差的定义求解(2)若随机变量XB(n,p),则可直接使用公式EXnp,DXnp(1p)求解菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)(2012江西高考)如图1091,从A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V0)(1)求V
9、0的概率;(2)求V的分布列及数学期望EV.菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)【思路点拨】对投资项目的评判,首先从收益的期望值进行比较,若相同,则进一步选择方差较小的投资项目菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)【尝试解答】(1)若按“项目一”投资,设获利为1万元则1的分布列为菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科
10、数学(广东专用)菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)1(1)解决此类题目的关键是正确理解随机变量取每一个值所表示的具体事件,求得该事件发生的概率,列出分布列(2)第(2)问中易忽视2012年年初投资与总资产的年底核算,错误回答2016年年底翻一番2随机变量的期望反映了随机变量取值的平均水平,方差反映了随机变量稳定于均值的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要理论依据,一般是先分析比较均值,若均值相同,再用方差来决定菜单课后作业典例探究提
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-991183.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
