分享
分享赚钱 收藏 举报 版权申诉 / 9

类型2022届新高考数学人教版一轮学案:第八章 第八节 第三课时 定点、定值、探索性问题 WORD版含解析.doc

  • 上传人:a****
  • 文档编号:240480
  • 上传时间:2025-11-21
  • 格式:DOC
  • 页数:9
  • 大小:365KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022届新高考数学人教版一轮学案:第八章 第八节第三课时定点、定值、探索性问题 WORD版含解析 2022 新高 学人 一轮 第八 八节 第三 课时 定点 探索 问题 WORD 解析
    资源描述:

    1、第三课时定点、定值、探索性问题授课提示:对应学生用书第181页题型一圆锥曲线中的定点问题合作探究探求直线、曲线过定点或两条直线的交点在定曲线上等问题.例(2020高考全国卷)已知A,B分别为椭圆E:y21(a1)的左,右顶点,G为E的上顶点,8.P为直线x6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点解析(1)由题设得A(a,0),B(a,0),G(0,1)则(a,1),(a,1)由8,得a218,即a3.所以E的方程为y21.(2)证明:设C(x1,y1),D(x2,y2),P(6,t)若t0,设直线CD的方程为xmyn,由题意可知3

    2、n3.由于直线PA的方程为y(x3),所以y1(x13)直线PB的方程为y(x3),所以y2(x23)可得3y1(x23)y2(x13)由于y1,故y,可得27y1y2(x13)(x23),即(27m2)y1y2m(n3)(y1y2)(n3)20.将xmyn代入y21得(m29)y22mnyn290.所以y1y2,y1y2.代入式得(27m2)(n29)2m(n3)mn(n3)2(m29)0.解得n3(舍去)或n.故直线CD的方程为xmy,即直线CD过定点.若t0,则直线CD的方程为y0,过点.综上,直线CD过定点.求解定点问题常用的方法 对点训练(2021武汉模拟)过抛物线C:y24x的焦点

    3、F且斜率为k的直线l交抛物线C于A,B两点,且|AB|8.(1)求直线l的方程;(2)若A关于x轴的对称点为D,求证:直线BD过定点,并求出该点的坐标解析:(1)由y24x知焦点F的坐标为(1,0),则直线l的方程为yk(x1),代入抛物线方程y24x,得k2x2(2k24)xk20,由题意知k0,且(2k24)24k2k216(k21)0.设A(x1,y1),B(x2,y2),则x1x2,x1x21.由抛物线的弦长公式知|AB|x1x228,则6,即k21,解得k1.所以直线l的方程为y(x1)(2)证明:由(1)及抛物线的对称性知,D点的坐标为(x1,y1),直线BD的斜率kBD,所以直线

    4、BD的方程为yy1(xx1),即(y2y1)yy2y1y4x4x1.因为y4x1,y4x2,x1x21,所以(y1y2)216x1x216,即y1y24(y1,y2异号)所以直线BD的方程为4(x1)(y1y2)y0,对任意y1,y2R,有解得即直线BD恒过定点(1,0)题型二圆锥曲线中的定值问题合作探究探求以直线与圆锥曲线的位置关系为背景,常涉及某些元素、斜率、弦长、面积的定值问题.例(2021驻马店模拟)已知椭圆C:1(ab0)的短轴长为2,且椭圆C的离心率为.(1)求椭圆C的方程;(2)过椭圆C的上焦点作相互垂直的弦AB,CD,求证:为定值解析(1)由题意可知2b2,b1,又椭圆的离心率

    5、为,则a,故椭圆C的方程为x21.(2)证明:当直线AB的斜率不存在或为零时,.当直线AB的斜率存在且不为零时,设直线AB的方程为ykx1,A(x1,y1),B(x2,y2),由消y得(k22)x22kx10,x1x2,x1x2,|AB|,同理可得,|CD|,.求解定值问题的两大途径 对点训练(2020新高考全国卷)已知椭圆C:1(ab0)的离心率为,且过点A(2,1)(1)求C的方程;(2)点M,N在C上,且AMAN,ADMN,D为垂足证明:存在定点Q,使得|DQ|为定值解析:(1)由题设得1,解得a26,b23.所以C的方程为1.(2)证明:设M(x1,y1),N(x2,y2)若直线MN与

    6、x轴不垂直,设直线MN的方程为ykxm,代入1,得(12k2)x24kmx2m260.于是x1x2,x1x2.由AMAN,得0,故(x12)(x22)(y11)(y21)0,整理得(k21)x1x2(kmk2)(x1x2)(m1)240.将代入上式,可得(k21)(kmk2)(m1)240,整理得(2k3m1)(2km1)0.因为A(2,1)不在直线MN上,所以2km10,所以2k3m10,k1.所以直线MN的方程为yk(k1)所以直线MN过点P.若直线MN与x轴垂直,可得N(x1,y1)由0,得(x12)(x12)(y11)(y11)0.又1,所以3x8x140.解得x12(舍去),x1.此

    7、时直线MN过点P.令Q为AP的中点,即Q.若D与P不重合,则由题设知AP是RtADP的斜边,故|DQ|AP|.若D与P重合,则|DQ|AP|.综上,存在点Q,使得|DQ|为定值题型三圆锥曲线中的存在性问题合作探究存在性问题一般分为探索条件和探索结论两种类型,若探索条件,则可先假设条件成立,再验证结论是否成立,成立则存在,否则不存在若探索结论,则应先写出结论的表达式,再针对表达式进行讨论,往往涉及对参数的讨论.例已知椭圆C:1(ab0)的离心率e,以上顶点和右焦点为直径端点的圆与直线xy20相切(1)求椭圆C的标准方程;(2)是否存在斜率为2的直线,使得当直线与椭圆C有两个不同的交点M,N时,能

    8、在直线y上找到一点P,在椭圆C上找到一点Q,满足?若存在,求出直线的方程;若不存在,说明理由解析(1)由椭圆的离心率e,得,得bc.上顶点为(0,b),右焦点为(b,0),以上顶点和右焦点为直径端点的圆的方程为222.圆心为,半径为b,b,即|b2|b,得bc1,a,椭圆C的标准方程为y21.(2)不存在理由如下:设直线的方程为y2xt,M(x1,y1),N(x2,y2),P,Q(x4,y4),MN的中点为D(x0,y0),由消去x,得9y22tyt280,所以y1y2,且4t236(t28)0,故y0,且3t3.由,得(x4x2,y4y2),所以y1y4y2,y4y1y2t,(也可由知四边形

    9、PMQN为平行四边形,而D为线段MN的中点,因此,D也为线段PQ的中点,所以y0,可得y4.)又3t3,所以y41,与椭圆上点的纵坐标的取值范围是1,1矛盾故不存在斜率为2的直线满足条件求解存在性问题的思路及策略(1)思路:先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在(2)策略:当条件和结论不唯一时要分类讨论;当给出结论而要推导出存在的条件时,先假设成立,再推出条件对点训练(2021惠州调研)已知定点A(3,0),B(3,0),直线AM,BM相交于点M,且它们的斜率之积为,记动点M的轨迹为曲线C.(1)求曲线C的方程;(2)过点T(1,0)的直线l与曲线C交于P,

    10、Q两点,是否存在定点S(x0,0),使得直线SP与SQ斜率之积为定值?若存在,求出S的坐标;若不存在,请说明理由解析:(1)设动点M(x,y),则直线MA的斜率kMA(x3),直线MB的斜率kMB(x3)因为kMAkMB,所以,化简得y21,又x3,所以曲线C的方程为y21(x3)(2)由题意得直线l的斜率不为0,根据直线l过点T(1,0),可设直线l的方程为xmy1,联立消去x得(m29)y22my80.设P(x1,y1),Q(x2,y2),则直线SP与SQ的斜率分别为kSP,kSQ,kSPkSQ,当x03时,mR,kSPkSQ;当x03时,mR,kSPkSQ.所以存在定点S(3,0),使得直线SP与SQ斜率之积为定值

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022届新高考数学人教版一轮学案:第八章 第八节 第三课时 定点、定值、探索性问题 WORD版含解析.doc
    链接地址:https://www.ketangku.com/wenku/file-240480.html
    相关资源 更多
  • 人教版数学五年级上学期期末综合素养练习题【夺冠系列】.docx人教版数学五年级上学期期末综合素养练习题【夺冠系列】.docx
  • 《解密高考》2015高考数学(人教A版)一轮作业:选修4-4-2参数方程.doc《解密高考》2015高考数学(人教A版)一轮作业:选修4-4-2参数方程.doc
  • 江苏省宿迁市泗阳县桃州中学2014-2015学年高一上学期第二次段考数学试卷 WORD版含解析.doc江苏省宿迁市泗阳县桃州中学2014-2015学年高一上学期第二次段考数学试卷 WORD版含解析.doc
  • 人教版数学五年级上学期期末综合素养练习题【夺冠】.docx人教版数学五年级上学期期末综合素养练习题【夺冠】.docx
  • 河南省郑州市巩义中牟登封等六县2021-2022学年高二数学下学期期末试题2(Word版附答案).doc河南省郑州市巩义中牟登封等六县2021-2022学年高二数学下学期期末试题2(Word版附答案).doc
  • 《解密高考》2015高考数学(人教A版)一轮作业:9-1直线方程.doc《解密高考》2015高考数学(人教A版)一轮作业:9-1直线方程.doc
  • 3.3.2 多项式 教案2021-2022学年华东师大版七年级数学上册.doc3.3.2 多项式 教案2021-2022学年华东师大版七年级数学上册.doc
  • 人教版数学五年级上学期期末综合素养练习题【基础题】.docx人教版数学五年级上学期期末综合素养练习题【基础题】.docx
  • 江苏省宿迁市沭阳县2021-2022学年高二数学下学期期中试题(Word版附解析).docx江苏省宿迁市沭阳县2021-2022学年高二数学下学期期中试题(Word版附解析).docx
  • 《解密高考》2015高考数学(人教A版)一轮作业:8-4直线、平面平行的判定与性质.doc《解密高考》2015高考数学(人教A版)一轮作业:8-4直线、平面平行的判定与性质.doc
  • 人教版数学五年级上学期期末综合素养练习题【培优】.docx人教版数学五年级上学期期末综合素养练习题【培优】.docx
  • 《解密高考》2015高考数学(人教A版)一轮作业:8-2空间几何体的表面积与体积.doc《解密高考》2015高考数学(人教A版)一轮作业:8-2空间几何体的表面积与体积.doc
  • 人教版数学五年级上学期期末综合素养练习题【培优b卷】.docx人教版数学五年级上学期期末综合素养练习题【培优b卷】.docx
  • 河南省郑州市巩义中学2019_2020学年高一数学下学期期中试题.doc河南省郑州市巩义中学2019_2020学年高一数学下学期期中试题.doc
  • 《解密高考》2015高考数学(人教A版)一轮作业:8-1空间几何体的结构和三视图及直观图.doc《解密高考》2015高考数学(人教A版)一轮作业:8-1空间几何体的结构和三视图及直观图.doc
  • 人教版数学五年级上学期期末综合素养练习题【培优a卷】.docx人教版数学五年级上学期期末综合素养练习题【培优a卷】.docx
  • 《解密高考》2015高考数学(人教A版)一轮作业:5-3平面向量的数量积及其应用.doc《解密高考》2015高考数学(人教A版)一轮作业:5-3平面向量的数量积及其应用.doc
  • 人教版数学五年级上学期期末综合素养练习题【含答案】.docx人教版数学五年级上学期期末综合素养练习题【含答案】.docx
  • 《解密高考》2015高考数学(人教A版)一轮作业:5-1平面向量的概念及其线性运算.doc《解密高考》2015高考数学(人教A版)一轮作业:5-1平面向量的概念及其线性运算.doc
  • 人教版数学五年级上学期期末综合素养练习题【名校卷】.docx人教版数学五年级上学期期末综合素养练习题【名校卷】.docx
  • 河南省郑州市巩义中学2019-2020学年高二数学下学期期中试题 理(含解析).doc河南省郑州市巩义中学2019-2020学年高二数学下学期期中试题 理(含解析).doc
  • 《解密高考》2015高考数学(人教A版)一轮作业:10-5圆锥曲线的综合问题.doc《解密高考》2015高考数学(人教A版)一轮作业:10-5圆锥曲线的综合问题.doc
  • 人教版数学五年级上学期期末综合素养练习题【名师系列】.docx人教版数学五年级上学期期末综合素养练习题【名师系列】.docx
  • 《解密高考》2015高考数学(人教A版)一轮作业:10-4曲线和方程(理).doc《解密高考》2015高考数学(人教A版)一轮作业:10-4曲线和方程(理).doc
  • 河南省郑州市巩义中学2019-2020学年高二数学下学期期中试题 文(含解析).doc河南省郑州市巩义中学2019-2020学年高二数学下学期期中试题 文(含解析).doc
  • 江苏省宿迁市泗阳县实验高级中学2022-2023学年高一上学期第一次调研数学试题 WORD版含解析.doc江苏省宿迁市泗阳县实验高级中学2022-2023学年高一上学期第一次调研数学试题 WORD版含解析.doc
  • 人教版数学五年级上学期期末综合素养练习题【名师推荐】.docx人教版数学五年级上学期期末综合素养练习题【名师推荐】.docx
  • 江苏省宿迁市沭阳县2021-2022学年高二下学期期中调研测试 数学 WORD版含答案.doc江苏省宿迁市沭阳县2021-2022学年高二下学期期中调研测试 数学 WORD版含答案.doc
  • 人教版数学五年级上学期期末综合素养练习题【各地真题】.docx人教版数学五年级上学期期末综合素养练习题【各地真题】.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1