2022届高中数学 微专题46 多变量表达式范围——消元法练习(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高中数学 微专题46 多变量表达式范围消元法练习含解析 2022 高中数学 专题 46 多变 表达式 范围 消元法 练习 解析
- 资源描述:
-
1、微专题46 多变量表达式的范围消元法一、基础知识:1、消元的目的:若表达式所含变量个数较多,则表达式的范围不易确定(会受多个变量的取值共同影响),所以如果题目条件能够提供减少变量的方式,则通常利用条件减少变量的个数,从而有利于求表达式的范围(或最值),消元最理想的状态是将多元表达式转为一元表达式,进而可构造函数求得值域2、常见消元的方法:(1)利用等量关系消元:若题目中出现了变量间的关系(等式),则可利用等式进行消元,在消元的过程中要注意以下几点: 要确定主元:主元的选取有这样几个要点:一是主元应该有比较明确的范围(即称为函数的定义域);二是构造出的函数能够解得值域(函数结构不复杂) 若被消去
2、的元带有范围,则这个范围由主元承担。例如选择为主元,且有,则除了满足自身的范围外,还要满足(即解不等式)(2)换元:常见的换元有两种:整体换元:若多元表达式可通过变形,能够将某一个含多变量的式子视为一个整体,则可通过换元转为一元表达式,常见的如等,例如在中,可变形为,设,则将问题转化为求的值域问题注:在整体换元过程中要注意视为整体的式子是否存在范围,即要确定新元的范围三角换元:已知条件为关于的二次等式时,可联想到三角公式,从而将的表达式转化为三角函数表达式来求得范围。因为三角函数公式的变形与多项式变形的公式不同,所以在有些题目中可巧妙的解决问题,常见的三角换元有:平方和:联想到正余弦平方和等于
3、1,从而有:推广:平方差:联想到正割() 与正切()的平方差为1,则有,推广:注:若有限定范围时,要注意对取值的影响,一般地,若的取值范围仅仅以象限为界,则可用对应象限角的取值刻画的范围3、消元后一元表达式的范围求法:(1)函数的值域通过常见函数,或者利用导数分析函数的单调性,求得函数值域(2)均值不等式:若表达式可构造出具备使用均值不等式(等)的条件,则可利用均值不等式快速得到最值。(3)三角函数: 形如的形式:则可利用公式转化为的形式解得值域(或最值) 形如:则可通过换元将其转化为传统函数进行求解 形如:,可联想到此式为点和定点连线的斜率,其中为单位圆上的点,通过数形结合即可解得分式范围二
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
人教版初中语文九上第一单元第1课《沁园春.ppt
