2022届高中数学讲义微专题80 排列组合中的常见模型 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高中数学讲义微专题80 排列组合中的常见模型 WORD版含解析 2022 高中数学 讲义 专题 80 排列组合 中的 常见 模型 WORD 解析
- 资源描述:
-
1、微专题80 排列组合的常见模型一、基础知识:(一)处理排列组合问题的常用思路:1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素。例如:用组成无重复数字的五位数,共有多少种排法?解:五位数意味着首位不能是0,所以先处理首位,共有4种选择,而其余数位没有要求,只需将剩下的元素全排列即可,所以排法总数为种2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可。例如:在10件产品中,有7件合格品,3件次品。从这10件产品中任意抽出3件,至少有一件次品的情况有多少种解:如果从正面考虑,则“至少1件次品
2、”包含1件,2件,3件次品的情况,需要进行分类讨论,但如果从对立面想,则只需用所有抽取情况减去全是正品的情况即可,列式较为简单。(种)3、先取再排(先分组再排列):排列数是指从个元素中取出个元素,再将这个元素进行排列。但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列。例如:从4名男生和3名女生中选3人,分别从事3项不同的工作,若这3人中只有一名女生,则选派方案有多少种。解:本题由于需要先确定人数的选取,再能进行分配(排列),所以将方案分为两步,第一步:确定选哪些学生,共有种可能,然后将选出的三个人进行排列:。所以共有种方案(二
3、)排列组合的常见模型1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。例如:5个人排队,其中甲乙相邻,共有多少种不同的排法解:考虑第一步将甲乙视为一个整体,与其余3个元素排列,则共有种位置,第二步考虑甲乙自身顺序,有种位置,所以排法的总数为种2、插空法:当题目中有“不相邻元素”时,则可考虑用剩余元素“搭台”,不相邻元素进行“插空”,然后再进行各自的排序注:(1)要注意在插空的过程中是否可以插在两边 (2)要从题目中判断是否需要各自排序例如:有6名同学排队,其中甲乙不相邻,则共有多少种不同的排法解:考虑剩下四名同学“
4、搭台”,甲乙不相邻,则需要从5个空中选择2个插入进去,即有种选择,然后四名同学排序,甲乙排序。所以种3、错位排列:排列好的个元素,经过一次再排序后,每个元素都不在原先的位置上,则称为这个元素的一个错位排列。例如对于,则是其中一个错位排列。3个元素的错位排列有2种,4个元素的错位排列有9种,5个元素的错位排列有44种。以上三种情况可作为结论记住例如:安排6个班的班主任监考这六个班,则其中恰好有两个班主任监考自己班的安排总数有多少种?解:第一步先确定那两个班班主任监考自己班,共有种选法,然后剩下4个班主任均不监考自己班,则为4个元素的错位排列,共9种。所以安排总数为 4、依次插空:如果在个元素的排
5、列中有个元素保持相对位置不变,则可以考虑先将这个元素排好位置,再将个元素一个个插入到队伍当中(注意每插入一个元素,下一个元素可选择的空)例如:已知6个人排队,其中相对位置不变,则不同的排法有多少种解:考虑先将排好,则有4个空可以选择,进入队伍后,有5个空可以选择,以此类推,有6种选择,所以方法的总数为种5、不同元素分组:将个不同元素放入个不同的盒中6、相同元素分组:将个相同元素放入个不同的盒内,且每盒不空,则不同的方法共有种。解决此类问题常用的方法是“挡板法”,因为元素相同,所以只需考虑每个盒子里所含元素个数,则可将这个元素排成一列,共有个空,使用个“挡板”进入空档处,则可将这个元素划分为个区
6、域,刚好对应那个盒子。例如:将6个相同的小球放入到4个不同的盒子里,那么6个小球5个空档,选择3个位置放“挡板”,共有种可能7、涂色问题:涂色的规则是“相邻区域涂不同的颜色”,在处理涂色问题时,可按照选择颜色的总数进行分类讨论,每减少一种颜色的使用,便意味着多出一对不相邻的区域涂相同的颜色(还要注意两两不相邻的情况),先列举出所有不相邻区域搭配的可能,再进行涂色即可。例如:最多使用四种颜色涂图中四个区域,不同的涂色方案有多少种?解:可根据使用颜色的种数进行分类讨论(1)使用4种颜色,则每个区域涂一种颜色即可:(2)使用3种颜色,则有一对不相邻的区域涂同一种颜色,首先要选择不相邻的区域:用列举法
7、可得:不相邻所以涂色方案有:(3)使用2种颜色,则无法找到符合条件的情况,所以讨论终止总计种二、典型例题:例1:某电视台邀请了6位同学的父母共12人,请12位家长中的4位介绍对子女的教育情况,如果这4位中恰有一对是夫妻,则不同选择的方法种数有多少思路:本题解决的方案可以是:先挑选出一对夫妻,然后在挑选出两个不是夫妻的即可。第一步:先挑出一对夫妻:第二步:在剩下的10个人中选出两个不是夫妻的,使用间接法:所以选择的方法总数为(种)答案:种例2:某教师一天上3个班级的课,每班上1节,如果一天共9节课,上午5节,下午4节,并且教师不能连上3节课(第5节和第6节不算连上),那么这位教师一天的课表的所有
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
2021秋七年级语文上册 第6单元 第20课 天上的街市教材习题课件 新人教版.ppt
