2022届高考数学人教B版一轮复习测评:8-4 空间中的垂直关系 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高考数学人教B版一轮复习测评:8-4 空间中的垂直关系 WORD版含解析 2022 高考 学人 一轮 复习 测评 空间 中的 垂直 关系 WORD 解析
- 资源描述:
-
1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。核心素养测评 四十一空间中的垂直关系(30分钟60分)一、选择题(每小题5分,共25分)1.,为不同的平面,m,n,l为不同的直线,则m的一个充分条件是()A.n,n,mB.=m,C.,mD.,=l,ml【解析】选A.由n,n知,又m,所以m.所以A正确.2.如图所示,b,c在平面内,ac=B,bc=A,且ab,ac,bc,若Ca,Db,则ACD是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【解析】选B.因为ab,bc,ac=B,所以b平面ABC,所以AD
2、AC,故ACD为直角三角形.3.如图,在四边形ABCD中,ADBC,AD=AB,BCD=45,BAD=90,将ABD沿BD折起,使平面ABD平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下面结论正确的是()A.平面ABD平面ABCB.平面ADC平面BDCC.平面ABC平面BDCD.平面ADC平面ABC【解析】选D.在平面图形中CDBD,折起后仍有CDBD,由于平面ABD平面BCD,故CD平面ABD,所以CDAB,又ABAD,ADCD=D,故AB平面ADC,又因为AB平面ABC,所以平面ABC平面ADC.4.如图,AB是圆的直径,PA垂直于圆所在的平面,C是圆上一点(不同于A、B)且
3、PA=AC,则二面角P-BC-A的大小为()A.60B.30C.45D.15【解析】选C.由条件得PABC,ACBC,又PAAC=A,所以BC平面PAC,所以PCA为二面角P-BC-A的平面角.在RtPAC中,由PA=AC得PCA=45.5.如图,正三角形PAD所在平面与正方形ABCD所在平面互相垂直,O为正方形ABCD的中心,M为正方形ABCD内一点,且满足MP=MC,则点M的轨迹为()【解析】选A.取AD的中点E,连接PE,PC,CE.由PEAD知PE平面ABCD,从而平面PEC平面ABCD,取PC,AB的中点F,G,连接DF,DG,FG,由PD=DC知DFPC,由DGEC知,DG平面PE
4、C,又PC平面PEC,所以DGPC,DFDG=D,所以PC平面DFG,又点F是PC的中点,因此,线段DG上的点满足MP=MC.二、填空题(每小题5分,共15分)6.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则AC1与平面A1B1C1D1所成角的正弦值为_.【解析】连接A1C1,则AC1A1为AC1与平面A1B1C1D1所成的角.因为AB=BC=2,所以A1C1=AC=2,又AA1=1,所以AC1=3,所以sinAC1A1=.答案:7.如图所示,在四棱锥P-ABCD中,PA底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足_时,平面MBD平面PCD.(只
5、要填写一个你认为正确的条件即可)世纪金榜导学号【解析】因为PA底面ABCD,所以BDPA,连接AC,则BDAC,且PAAC=A,所以BD平面PAC,所以BDPC,所以当DMPC(或BMPC)时,即有PC平面MBD,而PC平面PCD,所以平面MBD平面PCD.答案:DMPC(答案不唯一)8.设,是空间两个不同的平面,m,n是平面及外的两条不同直线.从“mn;n;m”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:_(用代号表示).世纪金榜导学号【解析】逐一判断.若成立,则m与的位置关系不确定,故错误;同理也错误;与均正确.答案:(或)三、解答题(每小题10分,共20分)9.如图,
6、在三棱锥A-BCD中,AB平面BCD,CDBD.世纪金榜导学号(1)求证:CD平面ABD. (2)若AB=BD=CD=1,M为AD中点,求三棱锥A-MBC的体积.【解析】(1)因为AB平面BCD,CD平面BCD,所以ABCD.又因为CDBD,ABBD=B,所以CD平面ABD.(2)由AB平面BCD,得ABBD.又AB=BD=1,所以SABD=12=.因为M是AD的中点,所以SABM=SABD=.根据(1)知,CD平面ABD,则三棱锥C ABM的高h=CD=1,故VA MBC=VC ABM=SABMh=.10.如图,在四棱锥P-ABCD
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-247431.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
三年级下册语文课件-4.珍珠泉|人教新课标 (共17张PPT).ppt
