2022版新高考数学一轮总复习学案:第3章 命题探秘1 第3课时 利用导数解决函数的零点问题 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022版新高考数学一轮总复习学案:第3章 命题探秘1 第3课时 利用导数解决函数的零点问题 WORD版含解析 2022
- 资源描述:
-
1、第3课时利用导数解决函数的零点问题技法阐释1.利用导数研究高次式、分式、指数式、对数式、三角式及绝对值式结构函数零点个数(或方程根的个数)问题的一般思路(1)可转化为用导数研究其函数的图象与x轴(或直线yk)在该区间上的交点问题;(2)证明有几个零点时,需要利用导数研究函数的单调性,确定分类讨论的标准,确定函数在每一个区间上的极值(最值)、端点函数值等性质,进而画出函数的大致图象再利用零点存在性定理,在每个单调区间内取值证明f(a)f(b)0.2.证明复杂方程在某区间上有且仅有一解的步骤第一步,利用导数证明该函数在该区间上单调;第二步,证明端点的导数值异号3.已知函数有零点求参数范围常用的方法
2、(1)分离参数法:一般命题情境为给出区间,求满足函数零点个数的参数范围,通常解法为从f(x)中分离出参数,然后利用求导的方法求出构造的新函数的最值,最后根据题设条件构建关于参数的不等式,确定参数范围;(2)分类讨论法:一般命题情境为没有固定区间,求满足函数零点个数的参数范围,通常解法为结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围高考示例思维过程(2020全国卷)设函数f(x)x3bxc,曲线yf(x)在点处的切线与y轴垂直(1)求b;(2)若f(x)有一个绝对值不大于1的零点,证明:f(x)所有零点的绝对值都不
3、大于1.(1)f(x)3x2b.依题意得f0,即b0,故b.(2)证明:由(1)知f(x)x3xc,f(x)3x2.f(x)与f(x)的情况为:xf(x)00f(x)cc因为f(1)f c,因为f(1)f c,由题设可知c.综上,若f(x)有一个绝对值不大于1的零点,则f(x)所有零点的绝对值都不大于1. 技法一讨论或证明函数零点的个数典例1(2019全国卷)已知函数f(x)sin xln(1x),f(x)为f(x)的导数证明:(1)f(x)在区间存在唯一极大值点;(2)f(x)有且仅有2个零点思维流程证明(1)设g(x)f(x),则g(x)cos x,g(x)sin x.当x时,g(x)单调
4、递减,而g(0)0,g0,可得g(x)在有唯一零点,设为.则当x(1,)时,g(x)0;当x时,g(x)0.所以g(x)在(1,)单调递增,在单调递减,故g(x)在存在唯一极大值点,即f(x)在存在唯一极大值点(2)f(x)的定义域为(1,)()当x(1,0时,由(1)知,f(x)在(1,0)单调递增,而f(0)0,所以当x(1,0)时,f(x)0,故f(x)在(1,0)单调递减又f(0)0,从而x0是f(x)在(1,0的唯一零点()当x时,由(1)知,f(x)在(0,)单调递增,在单调递减,而f(0)0,f0,所以存在,使得f()0,且当x(0,)时,f(x)0;当x时,f(x)0.故f(x
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-269541.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
