分享
分享赚钱 收藏 举报 版权申诉 / 8

类型江苏专版2019版高考数学一轮复习第六章数列课时达标检测三十一数列求和与数列的综合问题201805304100.doc

  • 上传人:a****
  • 文档编号:276333
  • 上传时间:2025-11-22
  • 格式:DOC
  • 页数:8
  • 大小:73.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    江苏 专版 2019 高考 数学 一轮 复习 第六 数列 课时 达标 检测 三十一 求和 综合 问题 201805304100
    资源描述:

    1、课时达标检测(三十一) 数列求和与数列的综合问题一、全员必做题1(2017山东高考)已知xn是各项均为正数的等比数列,且x1x23,x3x22.(1)求数列xn的通项公式;(2)如图,在平面直角坐标系xOy中,依次连结点P1(x1,1),P2(x2,2),Pn1(xn1,n1)得到折线P1P2Pn1,求由该折线与直线y0,xx1,xxn1所围成的区域的面积Tn.解:(1)设数列xn的公比为q,由已知得q0.由题意得所以3q25q20.因为q0,所以q2,x11,因此数列xn的通项公式为xn2n1.(2)过P1,P2,Pn1向x轴作垂线,垂足分别为Q1,Q2,Qn1.由(1)得xn1xn2n2n

    2、12n1,记梯形PnPn1Qn1Qn的面积为bn,由题意得bn2n1(2n1)2n2,所以Tnb1b2bn321520721(2n1)2n3(2n1)2n2.又2Tn320521722(2n1)2n2(2n1)2n1.得Tn321(2222n1)(2n1)2n1(2n1)2n1.所以Tn.2(2018泰州调研)对于数列xn,若对任意nN*,都有xn1成立,则称数列xn为“减差数列”设数列an是各项都为正数的等比数列,其前n项和为Sn,且a11,S3.(1)求数列an的通项公式,并判断数列Sn是否为“减差数列”;(2)设bn(2nan)tan,若数列b3,b4,b5,是“减差数列”,求实数t的取

    3、值范围解:(1)设数列an的公比为q,因为a11,S3,所以1qq2,即4q24q30,所以(2q1)(2q3)0.因为q0,所以q,所以an,Sn2,所以22Sn1,所以数列Sn是“减差数列”(2)由题设知,bnt2t.由bn1(n3,nN*),得tt2t,即,化简得t(n2)1.又当n3时,t(n2)1恒成立,即t恒成立,所以tmax1.故实数t的取值范围是(1,)3已知二次函数yf(x)的图象经过坐标原点,其导函数为f(x)6x2,数列an的前n项和为Sn,点(n,Sn)(nN*)均在函数yf(x)的图象上(1)求数列an的通项公式;(2)设bn,试求数列bn的前n项和Tn.解:(1)设

    4、二次函数f(x)ax2bx(a0),则f(x)2axb.由于f(x)6x2,得a3,b2,所以f(x)3x22x.又因为点(n,Sn)(nN*)均在函数yf(x)的图象上,所以Sn3n22n.当n2时,anSnSn1(3n22n)3(n1)22(n1)6n5.当n1时,a1S1312211615,所以an6n5(nN*)(2)由(1)得bn,故Tn1.二、重点选做题1(2017北京高考)设an和bn是两个等差数列,记cnmaxb1a1n,b2a2n,bnann(n1,2,3,),其中maxx1,x2,xs表示x1,x2,xs这s个数中最大的数(1)若ann,bn2n1,求c1,c2,c3的值,

    5、并证明cn是等差数列;(2)证明:或者对任意正数M,存在正整数m,当nm时,M;或者存在正整数m,使得cm,cm1,cm2,是等差数列解:(1)c1b1a1110,c2maxb12a1,b22a2max121,3221,c3maxb13a1,b23a2,b33a3max131,332,5332.当n3时,(bk1nak1)(bknak)(bk1bk)n(ak1ak)2n0,所以bknak关于kN*单调递减所以cnmaxb1a1n,b2a2n,bnannb1a1n1n.所以对任意n1,cn1n,于是cn1cn1,所以cn是等差数列(2)证明:设数列an和bn的公差分别为d1,d2,则bknakb

    6、1(k1)d2a1(k1)d1nb1a1n(d2nd1)(k1)所以cn当d10时,取正整数m,则当nm时,nd1d2,因此cnb1a1n.此时,cm,cm1,cm2,是等差数列当d10时,对任意n1,cnb1a1n(n1)maxd2,0b1a1(n1)(maxd2,0a1)此时,c1,c2,c3,cn,是等差数列当d10时,当n时,有nd1d2.所以n(d1)d1a1d2n(d1)d1a1d2|b1d2|.对任意正数M,取正整数mmax,故当nm时,M.2(2018江苏名校联考)如果一个数列从第2项起,每一项与它前一项的差都大于3,则称这个数列为“S型数列”(1)已知数列an满足a14,a2

    7、8,anan18n4(n2,nN*),求证:数列an是“S型数列”;(2)已知等比数列an的首项a1与公比q均为正整数,且an为“S型数列”,记bnan,当数列bn不是“S型数列”时,求数列an的通项公式;(3)是否存在一个正项数列cn是“S型数列”,当c29,且对任意大于等于2的自然数n都满足?如果存在,给出数列cn的一个通项公式(不必证明);如果不存在,请说明理由解:(1)an1an8n4,anan18n4.,得an1an18.所以a2n8n,a2n18n4.因此an4n,从而anan143.所以数列an是“S型数列”(2)由题意可知a11,且anan13,因此an单调递增且q2.而(an

    8、an1)(an1an2)an1(q1)an2(q1)(q1)(an1an2)0,所以anan1单调递增又bnan,因此bnbn1单调递增,又bn不是“S型数列”,所以存在n0,使得bn0bn013,所以b2b1bn0bn013,即a1(q1)4.又因为a2a13,即a1(q1)3且a1qN*.所以a1(q1)4,从而a14,q2或a12,q3或a11,q5.an2n1或an23n1或an5n1.(3)可取cn(n1)2可验证符合条件,而且cncn1(n1)2n22n13.三、冲刺满分题1(2018如皋月考)已知数列an,bn中,a11,bn,nN*,数列bn的前n项和为Sn.(1)若an2n1

    9、,求Sn;(2)是否存在等比数列an,使bn2Sn对任意nN*恒成立?若存在,求出所有满足条件的数列an的通项公式;若不存在,说明理由;(3)若a1a2an,求证:0Sn2.解:(1)当an2n1时,bn.所以,Sn.(2)满足条件的数列an存在且只有两个,其通项公式为an1和an(1)n1.证明:在bn2Sn中,令n1,得b3b1.设anqn1,则bn.由b3b1,得.若q1,则bn0,满足题设条件此时an1和an(1)n1.若q1,则,即q21,矛盾综上,满足条件的数列an存在,且只有两个,一个是an1,另一个是an(1)n1.(3)因1a1a2an,故an0,01,于是01.所以bn0,

    10、n1,2,3,所以Snb1b2bn0. 又bn2.故Snb1b2bn222222.所以0Sn2.2(2018扬州中学模拟)若数列an和bn的项数均为n,则将aibi|定义为数列an和bn的距离(1)已知an2n,bn2n1,nN*,求数列an和bn的距离dn.(2)记A为满足递推关系an1的所有数列an的集合,数列bn和cn为A中的两个元素,且项数均为n.若b12,c13,数列bn和cn的距离大于2 017,求n的最小值(3)若存在常数M0,对任意的nN*,恒有aibi|M则称数列an和bn的距离是有界的若an与an1的距离是有界的,求证:a与a的距离是有界的解:(1)dn(2)设a1p,其中

    11、p0且p1.由an1,得a2,a3,a4,a5p.所以a1a5,a2a6,因此集合A中的所有数列都具有周期性,且周期为4.数列bn中,b4k32,b4k23,b4k1,b4k(kN*),数列cn中,c4k33,c4k22,c4k1,c4k(kN*),因为bici|bici|,所以项数n越大,数列bn和cn的距离越大因为bici|,而bici|bici|8642 016,|c1b1|1,|c2b2|1,因此,当n3 457时,bici|2 017,当n3 458时,bici|2 018,故n的最小值为3 458.(3)因为an与an1的距离是有界的,所以存在正数M,对任意的nN*,有|an1an|anan1|a2a1|M.|an|anan1an1an2a2a1a1|anan1|an1an2|a2a1|a1|M|a1|.记KM|a1|,则有|aa|(an1an)(an1an)|(|an1|an|)|an1an|2K|an1an|.因此|aa|aa|aa|2KM.故a与a的距离是有界的

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:江苏专版2019版高考数学一轮复习第六章数列课时达标检测三十一数列求和与数列的综合问题201805304100.doc
    链接地址:https://www.ketangku.com/wenku/file-276333.html
    相关资源 更多
  • 江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc
  • 江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc
  • 江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx
  • 湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc
  • 湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc
  • 湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc
  • 湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc
  • 江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc
  • 江西省重点高中2022学年高一数学上学期第三次月考试题.docx江西省重点高中2022学年高一数学上学期第三次月考试题.docx
  • 湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc
  • 江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc
  • 江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc
  • 湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc
  • 江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1