《全程复习方略》2016届高考数学(全国通用)课时提升作业:第七章 立体几何 7.8 立体几何中的向量方法(二)——求空间角和距离.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全程复习方略
- 资源描述:
-
1、高考资源网() 您身边的高考专家温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业(四十七)立体几何中的向量方法(二)求空间角和距离(25分钟60分)一、选择题(每小题5分,共25分)1.长方体ABCD-A1B1C1D1中,AB=AA1=2,AD=1,E为CC1的中点,则异面直线BC1与AE所成角的余弦值为()A.B.C.D.【解析】选B.建立空间直角坐标系如图.则A(1,0,0),E(0,2,1),B(1,2,0),C1(0,2,2).=(-1,0,2),=(-1,2,1),cos=.所以异面直线BC1与A
2、E所成角的余弦值为.2.(2015宁波模拟)已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A.B.C.D.【解析】选A.以D为原点,建立如图所示的空间直角坐标系,设AB=1,则=(1,1,0),=(0,1,2),=(0,1,0),设平面DBC1的法向量为n=(x,y,z),则取z=1,则y=-2,x=2,所以n=(2,-2,1),所以sin=.【一题多解】本题还可以采用如下方法解答.方法一:选A.设AB=1,则AA1=2.设ACBD=O,连接C1O,过C作CHC1O于H,连接DH,显然C1DB是等腰三角形,所以C1OBD,又C1CBD,因为
3、C1OC1C=C1,所以BD平面C1CO,CH平面C1CO,所以BDCH,而CHC1O,BDC1O=O,所以CH平面C1BD,所以CDH是CD与平面C1BD所成的角,在RtC1OC中,OC=,C1C=2,所以C1O=,由C1COC=C1OCH知CH=,在RtCDH中,sinCDH=.方法二:选A.设点C到平面C1BD的距离为h,CD与平面C1BD所成的角为,由=知h=SCBDC1C,所以h=,所以sin=.3.已知长方体ABCD-A1B1C1D1中,AB=BC=4,CC1=2,则直线BC1和平面DBB1D1所成角的正弦值为()A.B.C.D.【解题提示】以A为原点建立空间直角坐标系,分别求出直
4、线BC1的方向向量与平面DBB1D1的法向量,用空间向量的直线与平面所成角的夹角公式计算得解.【解析】选C.如图建立空间直角坐标系,则B(4,0,0),C(4,4,0),C1(4,4,2),显然AC平面BB1D1D,所以=(4,4,0)为平面BB1D1D的一个法向量.又=(0,4,2).所以cos=.即直线BC1和平面DBB1D1所成角的正弦值为.4.(2015厦门模拟)二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=2,则该二面角的大小为()A.150B.45C.60D.120【解析】选C.由条件知=0,=0,因
5、为=+.所以|2=|2+|2+|2+2+2+2=62+42+82+268cos=(2)2.所以cos=-,则=120,即=60.所以二面角的大小为60.5.(2015北京模拟)在四面体P-ABC中,PA,PB,PC两两垂直,设PA=PB=PC=a,则点P到平面ABC的距离为()A.B.aC.D.a【解题提示】以P为原点建立空间直角坐标系,利用空间向量法求解.【解析】选B.根据题意,可建立如图所示的空间直角坐标系Pxyz,则P(0,0,0),A(a,0,0),B(0,a,0),C(0,0,a).所以=(-a,a,0),=(-a,0,a),=(a,0,0).设平面ABC的法向量为n=(x,y,z)
6、.由得得令x=1,所以n=(1,1,1),所以P到平面ABC的距离d=a.二、填空题(每小题5分,共15分)6.如图,在直三棱柱中,ACB=90,AC=BC=1,侧棱AA1=,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为.【解析】以C1为原点,C1A1,C1B1,C1C所在直线分别为x,y,z轴建立空间直角坐标系,则平面AA1C1C的法向量为n=(0,1,0),AM=-(1,0,)=,则直线AM与平面AA1C1C所成角的正弦值为sin=|cos|=,所以tan=.答案:7.已知点E,F分别在正方体ABCD -A1B1C1D1的棱BB1,CC1上,且B1E=2EB,CF=2FC1
7、,则面AEF与面ABC所成的二面角的正切值为.【解析】如图,建立空间直角坐标系Dxyz,设DA=1,由已知条件得A(1,0,0),E,F,=,=,设平面AEF的法向量为n=(x,y,z),面AEF与面ABC所成的二面角为,由图知为锐角,由得令y=1,z=-3,x=-1,则n=(-1,1,-3),平面ABC的法向量为m=(0,0,-1),cos=|cos|=,tan=.答案:8.(2015石家庄模拟)如图所示,正方体ABCD-A1B1C1D1的棱长为1,E是A1B1上的点,则点E到平面ABC1D1的距离是.【解析】以点D为坐标原点,DA,DC,DD1所在直线为x,y,z轴,建立如图所示空间直角坐
8、标系,设点E(1,a,1)(0a1),连接D1E,则=(1,a,0).连接A1D,易知A1D平面ABC1D1,则=(1,0,1)为平面ABC1D1的一个法向量.所以点E到平面ABC1D1的距离是d=.答案:三、解答题(每小题10分,共20分)9.(2014湖南高考)如图,四棱柱ABCD-A1B1C1D1的所有棱长都相等,ACBD=O,A1C1B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O底面ABCD.(2)若CBA=60,求二面角C1-OB1-D的余弦值.【解题提示】(1)利用矩形的邻边垂直,及线线平行证明OO1AC,OO1BD.(2)由二面角的定义或者向量
9、法求二面角的余弦值.【解析】(1)因为四边形ACC1A1和四边形BDD1B1均为矩形,所以CC1AC,DD1BD,又CC1DD1OO1,所以OO1AC,OO1BD,因为ACBD=O,所以O1O底面ABCD.(2)方法一:如图,过O1作O1HB1O,垂足为H,连接C1H,由(1)可得OO1A1C1,由于A1B1C1D1是菱形,所以B1D1A1C1,所以A1C1平面B1D1DB,所以由三垂线定理得HC1B1O,所以O1HC1就是二面角C1-OB1-D的平面角.设棱柱的棱长为2,因为CBA=60,所以OB=,OC=1,OB1=,在直角三角形O1OB1中,O1H=,因为O1C1=1,所以C1H=,所以
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-287608.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
六年级上册语文预习课件-第18课夜莺之歌_北师大版 (共9张PPT).ppt
