《大高考》2016高考数学文(全国通用)二轮复习专题训练:五年高考 专题9 第3节椭圆及其性质 WORD版含答案.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大高考 大高考2016高考数学文全国通用二轮复习专题训练:五年高考 专题9 第3节椭圆及其性质 WORD版含答案 高考 2016 数学 全国 通用 二轮 复习 专题 训练 年高 椭圆 及其 性质
- 资源描述:
-
1、考点一椭圆的定义及其标准方程1(2015广东,8)已知椭圆1(m0)的左焦点为F1(4,0),则m()A2 B3 C4 D9解析由题意知25m216,解得m29,又m0,所以m3.答案B2(2015福建,11)已知椭圆E:1(ab0)的右焦点为F,短轴的一个端点为M,直线l:3x4y0交椭圆E于A,B两点若|AF|BF|4,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是()A. B. C. D.解析左焦点F0,连接F0A,F0B,则四边形AFBF0为平行四边形|AF|BF|4,|AF|AF0|4,a2.设M(0,b),则,1b2.离心率e,故选A.答案A3(2014大纲全国,9)已知椭
2、圆C:1(ab0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点若AF1B的周长为4,则C的方程为()A.1 B.y21C.1 D.1解析由已知e,又AF1B的周长为|AF1|AB|BF1|AF1|(|AF2|BF2|)|BF1|(|AF1|AF2|)(|BF2|BF1|)2a2a4,解得a,故c1,b,故所求的椭圆方程为1,故选A.答案A4(2013广东,9)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是()A.1 B.1C.1 D.1解析由题意,得c1,e,所以a2,b23,所以椭圆的方程为1.答案D5(2011福建,11)设圆锥曲线的两个焦点分
3、别为F1,F2.若曲线上存在点P满足|PF1|F1F2|PF2|432,则曲线的离心率等于()A.或 B.或2C.或2 D.或解析依题意,设|PF1|4t,|F1F2|3t,|PF2|2t(t0)若曲线是椭圆,则2a|PF1|PF2|6t,此时离心率e;若曲线是双曲线,则2a|PF1|PF2|2t,此时离心率e,故选A.答案A6(2015新课标全国,20)已知椭圆C:1(ab0)的离心率为,点(2,)在C上(1)求C的方程;(2)直线l不经过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB中点为M,证明:直线OM的斜率与直线l的斜率的乘积为定值解(1)由题意得,1,解得a28,b24.
4、所以C的方程为1.(2)设直线l:ykxb(k0,b0),A(x1,y1),B(x2,y2),M(xM,yM)将ykxb代入1得(2k21)x24kbx2b280.故xM,yMkxMb.于是直线OM的斜率kOM,即kOMk.所以直线OM的斜率与直线l的斜率的乘积为定值7(2014四川,20)已知椭圆C:1(ab0)的左焦点为F(2,0),离心率为.(1)求椭圆C的标准方程;(2)设O为坐标原点,T为直线x3上一点,过F作TF的垂线交椭圆于P,Q.当四边形OPTQ是平行四边形时,求四边形OPTQ的面积解(1)由已知可得,c2,所以a.又由a2b2c2,解得b,所以椭圆C的标准方程是1.(2)设T
5、点的坐标为(3,m),则直线TF的斜率kTFm.当m0时,直线PQ的斜率kPQ,直线PQ的方程是xmy2.当m0时,直线PQ的方程是x2,也符合xmy2的形式设P(x1,y1),Q(x2,y2),将直线PQ的方程与椭圆C的方程联立,得消去x,得(m23)y24my20,其判别式16m28(m23)0.所以y1y2,y1y2,x1x2m(y1y2)4.因为四边形OPTQ是平行四边形,所以,即(x1,y1)(3x2,my2)所以解得m1.此时,四边形OPTQ的面积SOPTQ2SOPQ2|OF|y1y2|22.8(2014安徽,21)设F1,F2分别是椭圆E:1(ab0)的左、右焦点,过点F1的直线
6、交椭圆E于A,B两点,|AF1|3|F1B|.(1)若|AB|4,ABF2的周长为16,求|AF2|;(2)若cosAF2B,求椭圆E的离心率解(1)由|AF1|3|F1B|,|AB|4,得|AF1|3,|F1B|1.因为ABF2的周长为16,所以由椭圆定义可得4a16,|AF1|AF2|2a8.故|AF2|2a|AF1|835.(2)设|F1B|k,则k0且|AF1|3k,|AB|4k.由椭圆定义可得,|AF2|2a3k,|BF2|2ak.在ABF2中,由余弦定理可得,|AB|2|AF2|2|BF2|22|AF2|BF2|cosAF2B,即(4k)2(2a3k)2(2ak)2(2a3k)(2
7、ak)化简可得(ak)(a3k)0,而ak0,故a3k.于是有|AF2|3k|AF1|,|BF2|5k.因此|BF2|2|F2A|2|AB|2,可得F1AF2A,故AF1F2为等腰直角三角形从而ca,所以椭圆E的离心率e.9(2013新课标全国,21)已知圆M:(x1)2y21,圆N:(x1)2y29,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.解由已知得圆M的圆心为M(1,0),半径r11;圆N的圆心为N(1,0),半径r23.设圆P的圆心为P(x,y),半径为R.(
8、1)因为圆P与圆M外切并且与圆N内切,所以|PM|PN|(Rr1)(r2R)r1r24.由椭圆的定义可知,曲线C是以M、N为左、右焦点,长半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为1(x2)(2)对于曲线C上任意一点P(x,y),由于|PM|PN|2R22,所以R2,当且仅当圆P的圆心为(2,0)时,R2.所以当圆P的半径最长时,其方程为(x2)2y24.若l的倾斜角为90,则l与y轴重合,可得|AB|2,若l的倾斜角不为90,由r1R知l不平行于x轴,设l与x轴的交点为Q,则,可求得Q(4,0),所以可设l:yk(x4)由l与圆M相切得1,解得k.当k时,将yx代入1,并整理得7x
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-294615.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
六年级上册语文课件-习作二∣人教新课标版(共8张PPT).ppt
