《考前三个月》2015届高考数学(浙江专用理科)必考题型过关练:专题7 第32练.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考前三个月
- 资源描述:
-
1、第32练圆锥曲线中的探索性问题题型一定值、定点问题例1已知椭圆C:1经过点(0,),离心率为,直线l经过椭圆C的右焦点F交椭圆于A、B两点(1)求椭圆C的方程;(2)若直线l交y轴于点M,且,当直线l的倾斜角变化时,探求的值是否为定值?若是,求出的值;否则,请说明理由破题切入点(1)待定系数法(2)通过直线的斜率为参数建立直线方程,代入椭圆方程消y后可得点A,B的横坐标的关系式,然后根据向量关系式,.把,用点A,B的横坐标表示出来,只要证明的值与直线的斜率k无关即证明了其为定值,否则就不是定值解(1)依题意得b,e,a2b2c2,a2,c1,椭圆C的方程为1.(2)因直线l与y轴相交于点M,故
2、斜率存在,又F坐标为(1,0),设直线l方程为yk(x1),求得l与y轴交于M(0,k),设l交椭圆A(x1,y1),B(x2,y2),由消去y得(34k2)x28k2x4k2120,x1x2,x1x2,又由,(x1,y1k)(1x1,y1),同理,.所以当直线l的倾斜角变化时,直线的值为定值.题型二定直线问题例2在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x22py(p0)相交于A,B两点(1)若点N是点C关于坐标原点O的对称点,求ANB面积的最小值;(2)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得的弦长恒为定值?若存在,求出l的方程;若不存在,请说明理由破题切入
3、点假设符合条件的直线存在,求出弦长;利用变量的系数恒为零求解解方法一(1)依题意,点N的坐标为N(0,p),可设A(x1,y1),B(x2,y2),直线AB的方程为ykxp,与x22py联立得消去y得x22pkx2p20.由根与系数的关系得x1x22pk,x1x22p2.于是SABNSBCNSACN2p|x1x2|p|x1x2|pp2p2,当k0时,(SABN)min2p2.(2)假设满足条件的直线l存在,其方程为ya,AC的中点为O,l与以AC为直径的圆相交于点P,Q,PQ的中点为H,则OHPQ,Q点的坐标为(,)|OP|AC|,|OH|2ay1p|,|PH|2|OP|2|OH|2(yp2)
4、(2ay1p)2(a)y1a(pa),|PQ|2(2|PH|)24(a)y1a(pa)令a0,得a,此时|PQ|p为定值,故满足条件的直线l存在,其方程为y,即抛物线的通径所在的直线方法二(1)前同方法一,再由弦长公式得|AB|x1x2|2p,又由点到直线的距离公式得d.从而SABNd|AB|2p 2p2.当k0时,(SABN)min2p2.(2)假设满足条件的直线l存在,其方程为ya,则以AC为直径的圆的方程为(x0)(xx1)(yp)(yy1)0,将直线方程ya代入得x2x1x(ap)(ay1)0,则x4(ap)(ay1)4(a)y1a(pa)设直线l与以AC为直径的圆的交点为P(x3,y
5、3),Q(x4,y4),则有|PQ|x3x4| 2.令a0,得a,此时|PQ|p为定值,故满足条件的直线l存在,其方程为y,即抛物线的通径所在的直线题型三定圆问题例3已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,两个焦点分别为F1和F2,椭圆G上一点到F1和F2的距离之和为12,圆Ck:x2y22kx4y210(kR)的圆心为点Ak.(1)求椭圆G的方程;(2)求AkF1F2的面积;(3)问是否存在圆Ck包围椭圆G?请说明理由破题切入点(1)根据定义待定系数法求方程(2)直接求(3)关键看长轴两端点解(1)设椭圆G的方程为1(ab0),半焦距为c,则解得所以b2a2c236279.所以所
6、求椭圆G的方程为1.(2)点Ak的坐标为(k,2),SAkF1F2|F1F2|2626.(3)若k0,由620212k0211512k0,可知点(6,0)在圆Ck外;若k0,可知点(6,0)在圆Ck外所以不论k为何值,圆Ck都不能包围椭圆G.即不存在圆Ck包围椭圆G.总结提高(1)定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关在这类试题中选择消元的方向是非常关键的(2)由直线方程确定定点,若得到了直线方程的点斜式:yy0k(xx0),则直线必过定点(x0,y0);若得到了直线方程的斜截式:ykxm,则直线必过定点(0,m)(3)定直线问
7、题一般都为特殊直线xx0或yy0型1在平面直角坐标系xOy中,经过点(0,)且斜率为k的直线l与椭圆y21有两个不同的交点P和Q.(1)求k的取值范围;(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由解(1)由已知条件,得直线l的方程为ykx,代入椭圆方程得(kx)21.整理得(k2)x22kx10.直线l与椭圆有两个不同的交点P和Q等价于8k24(k2)4k220,解得k.即k的取值范围为(,)(,)(2)设P(x1,y1),Q(x2,y2),则(x1x2,y1y2),由方程,得x1x2.又y1y2k(x1x2)
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-308617.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
[32491977]第5课《大自然的语言》-2021-2022学年八年级语文下学期同步精讲课.pptx
