《解析》山东省青岛市2020届高三5月模拟检测数学试题 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 解析 解析山东省青岛市2020届高三5月模拟检测数学试题 WORD版含解析 山东省 青岛市 2020 届高三 模拟 检测 数学试题 WORD
- 资源描述:
-
1、高考资源网() 您身边的高考专家山东省青岛市2020年5月高三模拟检测数学试题一、单项选择题1.已知全集,集合,( )A. B. C. D. 【答案】B【解析】【分析】将集合,化简,再求出,根据交集的定义即可得到答案.【详解】因为,所以或 故选:B.【点睛】本题主要考查交集、补集的运算,同时考查一元二次不等式的解法及指数不等式的解法,属于基础题.2.若复数满足(其中是虚数单位),则复数的共轭复数的虚部为( )A. B. C. D. 【答案】C【解析】【分析】根据复数模的定义可得,从而可得,再根据复数的乘除运算即可求出复数,再根据共轭复数的定义,求出即可得到答案.【详解】由得,所以,所以,所以的
2、虚部为.故选:C.【点睛】本题主要考查复数的模,复数代数形式的乘除运算及共轭复数的概念,属于基础题.3.已知向量,若,则( )A. B. C. D. 【答案】A【解析】【分析】根据向量平行的坐标表示列出方程可得,代入解方程即可求出.【详解】因为,所以,所以,又因为,所以,即,解得或,又,所以.故选:A.【点睛】本题主要考查向量平行的坐标表示,同角三角函数平方关系,属于基础题.4.在数学的学习和研究中,常用函数的图象研究函数的性质,也常用函数解析式来分析函数的图象与性质,下列函数的解析式(其中为自然对数的底数)与所给图象最契合的是( )A. B. C. D. 【答案】D【解析】【分析】根据时的函
3、数值排除即可【详解】当时,对于A,故排除A;对于B,故排除B;对于C,故排除C;对于D,符合题意.故选:D.【点睛】本题主要考查函数表示方法中的图象法与解析法之间的对应关系,可利用从函数图象上的特殊点,排除不合要求的解析式5.从编号为1,2,3,4,5,6的6张卡片中随机抽取一张,放回后再随机抽取一张,则第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除的概率为( )A. B. C. D. 【答案】C【解析】分析】基本事件的总数有种,利用列举法求出第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除的基本事件有种,根据古典概型概率计算公式,即可求出答案.【详解】从编号为1,2,3,4,5
4、,6的6张卡片中随机抽取一张,放回后再随机抽取一张,有个基本事件,其中第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除有如下基本事件(第一次抽得的卡片,第二次摸到卡片用表示):,共个,所以第一次抽得的卡片上数字能被第二次抽得的卡片上的数字整除的概率.故选:C.【点睛】本题主要考查古典概型的概率的求法,属于基础题.6.“蒙日圆”涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆.若椭圆:的离心率为,则椭圆的蒙日圆方程为( )A. B. C. D. 【答案】B【解析】【分析】根据椭圆的离心率可求出,根据题意知椭圆上两条互
5、相垂直的切线的交点必在一个与椭圆同心的圆上,利用过上顶点和右顶点的切线可得蒙日圆上的一点,即可椭圆的蒙日圆方程.【详解】因为椭圆:的离心率为,所以,解得,所以椭圆的方程为,所以椭圆的上顶点,右顶点,所以经过两点的切线方程分别为,所以两条切线的交点坐标为,又过,的切线互相垂直,由题意知交点必在一个与椭圆同心的圆上,可得圆的半径,所以椭圆的蒙日圆方程为.故选:B.【点睛】本题主要考查椭圆的几何性质,同时考查圆的方程,属于基础题.7.已知是内部一点,且,则的面积为( )A. B. C. D. 【答案】A【解析】【分析】由可得,设为的中点,则,可得,从而可得为的中点,进而可得,由可得,再由即可求出.【
6、详解】在中,由,得,所以,设为的中点,则,所以,所以为的中点,所以,因为,所以,所以,所以,所以.故选:A.【点睛】本题主要考查向量的线性运算,向量的数量积及三角形的面积公式,属于中档题.8.已知函数,若在上恒成立,为自然对数的底数,则实数的取值范围是( )A. B. C. D. 【答案】B【解析】【分析】在上恒成立,即在上恒成立,令,故只需即可,利用导数求出的最大值即可.【详解】若在上恒成立,即在上恒成立,令,故只需即可,令,得,当时,;当时,所以在上是单调递增,在上是单调递减,所以当,所以实数取值范围是.故选:B.【点睛】本题主要考查分离参数法处理恒成立问题,同时考查利用导数求函数的最值,
7、属于中档题.二多项选择题9.设,为实数,且,则下列不等式中正确的是( )A. B. C. D. 【答案】AC【解析】【分析】对A,利用作差法比较即可;对B,利用不等式的性质判断即可;对C,利用作差法比较即可;对D,利用指数函数的单调性比较即可.【详解】对A,因为,所以,所以,所以,故A正确;对B,当时,不成立,故B错误;对C,因为,所以,所以,故C正确;对D,因为函数在上单调递减,又,所以,故D错误.故选:AC【点睛】本题主要考查作差法比较大小,不等式的性质及指数函数的单调性,属于基础题.10.已知等差数列的前项和为,公差,是与的等比中项,则下列选项正确的是( )A. B. C. 当或时,取得
8、最大值D. 当时,的最大值为20【答案】BCD【解析】【分析】由可得,由是与的等比中项可得,联立方程可求出,即可判断A,B选项,求出等差数列的前项和为,即可判断C,D.【详解】因为,所以,即,又因为是与的等比中项,所以,所以,整理得,由解得,故A错误;所以,又,所以当或时,取得最大值,故C正确;令,解得,又,所以的最大值为,故D正确.故选:BCD【点睛】本题主要考查等差数列的通项公式,等差数列前项和公式,等比中项的应用,同时考查等差数列和的最值问题,属于基础题.11.声音是由物体振动产生的声波,纯音的数学模型是函数,我们听到的声音是由纯音合成的,称之为复合音若一个复合音的数学模型是函数则下列结
9、论正确的是( )A. 是偶函数B. 是周期函数C. 在区间上单调递增D. 最大值为2【答案】ABD【解析】【分析】根据奇偶性的定义和周期函数的定义可判断A,B;当时,函数可化为,可判断C;结合函数的周期性对进行分类讨论,将函数的绝对值去掉,再求其最大值可判断D.【详解】函数的定义域为,因为,所以是偶函数,故A正确;因为,所以是以为周期的周期函数,故B正确;当时,函数可化为,此时在上单调递增,在上单调递减,故C错误;由于函数是以为周期的周期函数,故只需研究一个周期内的最大值即可,不妨取,当时,函数可化为,由,得,所以当,即时,取得最大值,当时,由,得,所以,即时,取得最大值,故当时,取得最大值,
10、故D正确.故选:ABD.【点睛】本题主要考查三角函数的奇偶性、周期性、单调性的判断及最值的求法,同时考查两角和与差的正弦公式的逆用,属于中档题.12.若长方体的底面是边长为2的正方形,高为4,是的中点,则( )A. B. 平面平面C. 三棱锥的体积为D. 三棱锥的外接球的表面积为【答案】CD【解析】【分析】以为正交基底建立空间直角坐标系,写出各点坐标,计算值即可判断A;分别求出平面,平面的法向量,判断它们的法向量是否共线,即可判断B;利用等体积法,求出三棱锥的体积即可判断C;三棱锥的外接球即为长方体的外接球,故求出长方体的外接球的表面积即可判断D.【详解】以为正交基底建立如图所示的空间直角坐标
11、系,则,所以,因为,所以与不垂直,故A错误;,设平面的一个法向量为,则由,得,所以,不妨取,则,所以,同理可得设平面的一个法向量为,故不存在实数使得,故平面与平面不平行,故B错误;在长方体中,平面,故是三棱锥的高,所以,故C正确;三棱锥的外接球即为长方体的外接球,故外接球的半径,所以三棱锥的外接球的表面积,故D正确.故选:CD.【点睛】本题主要考查用向量法判断线线垂直、面面平行,等体积法的应用及几何体外接球的表面积.三、填空题13.已知命题“”为假命题,则实数的取值范围是_【答案】【解析】命题“”假命题,则“”为真命题.所以,解得.答案为:.14.的展开式中的常数项为_.【答案】【解析】【分析
12、】先求得中含的项与常数项,进而可得的常数项.【详解】的展开式中含的项为,的展开式中的常数项为,所以的展开式中的常数项为.故答案为:.【点睛】本题考查二项展开式中常数项的求法,解题时要认真审题,注意二项式定理的合理运用,属于基础题.15.已知为奇函数,当时,则曲线在点处的切线方程是_【答案】【解析】【分析】利用函数为奇函数,可求出当时,的表达式为,然后根据在一点处的切线方程的求法,即可求出曲线在点处的切线方程.【详解】因为为奇函数,所以,当时,则,所以,所以,所以曲线在点处的切线的斜率,所以切线方程是,即.故答案为:【点睛】本题主要考查根据函数的奇偶性求函数的解析式,在一点处的切线方程的求法,同
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
