分享
分享赚钱 收藏 举报 版权申诉 / 14

类型江苏省无锡市2017_2018学年高二数学下学期期末考试试题理201808150325.doc

  • 上传人:a****
  • 文档编号:328123
  • 上传时间:2025-11-27
  • 格式:DOC
  • 页数:14
  • 大小:683KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    江苏省 无锡市 2017 _2018 学年 数学 学期 期末考试 试题 201808150325
    资源描述:

    1、江苏省无锡市2017-2018学年高二下期期末数学(理)试题评卷人得分一、填空题1已知复数,其中是虚数单位,则的模是_【答案】【解析】分析:分子分母同时乘以,化简整理,得出,再得模。详解:,所以。点睛:复数的除法运算公式。2设离散型随机变量的概率分布如下:则的值为_【答案】【解析】分析:离散型随机变量的概率之和为1详解:解得:。点睛:离散型随机变量的概率之和为1,是分布列的性质。3已知直线在矩阵对应的变换作用下变为直线:,则直线的方程为_【答案】【解析】分析:用相关点法求解,设直线上的点为 直线上的点为,所以,代入直线的方程详解:设直线上的点为 直线上的点为,直线在矩阵对应的变换作用下所以:,

    2、代入直线的方程整理可得直线的方程为。点睛:理解矩阵的计算规则和相互之间的转换。4直线与圆相交的弦长为_【答案】【解析】试题分析:将直线化为普通方程为:,化为普通方程为:,即,联立得,解得,直线与圆相交的弦长为故答案为将极坐标方程化为直角坐标系方程是常用方法考点:简单曲线的极坐标方程视频5若,则,的大小关系是_【答案】【解析】分析:作差法,用,判断其符号。详解:,所以,。点睛:作差法是比较大小的基本方法,根式的分子有理化是解题的关键6求值: _【答案】1【解析】分析:观察通项展开式中的中的次数与中的一致。详解:通项展开式中的,故=点睛:合并二项式的展开式,不要纠结整体的性质,抓住具体的某一项中的

    3、中的次数与中的一致,有负号时注意在上还是在上。7有甲、乙、丙三项不同任务,甲需由人承担,乙、丙各需由人承担,从人中选派人承担这三项任务,不同的选法共有_种(用数字作答)【答案】60【解析】分析:先从5人中选4人(组合),再给4个人分派3项任务,甲需2人,乙、丙各需由人。详解:先从5人中选4人(组合),再给4个人分派3项任务,甲需2人,乙、丙各需由人(乙、丙派的人不一样故要排列)。共有60种。 点睛:分配问题,先分组(组合)后分派(排列)。8用反证法证明命题:“定义在实数集上的单调函数的图象与轴至多只有个交点”时,应假设“定义在实数集上的单调函数的图象与轴_”【答案】至少有个交点【解析】分析:反

    4、证法证明命题,只否定结论,条件不变。详解:命题:“定义在实数集上的单调函数的图象与轴至多只有个交点”时,结论的反面为“与轴至少有个交点”。点睛:反证法证明命题,只否定结论,条件不变,至多只有个理解为,故否定为.9在圆中:半径为的圆的内接矩形中,以正方形的面积最大,最大值为.类比到球中:半径为的球的内接长方体中,以正方体的体积最大,最大值为_【答案】【解析】分析:圆的内接矩形中,以正方形的面积最大,当边长等于时,类比球中内接长方体中,以正方体的体积最大,棱长为详解:圆的内接矩形中,以正方形的面积最大,当边长时,解得时,类比球中内接长方体中,以正方体的体积最大,当棱长, 解得时,正方体的体积为点睛

    5、:类比推理,理会题意抓住题目内在结构相似的推导过程,不要仅模仿形式上的推导过程。10平面上画条直线,且满足任何条直线都相交,任何条直线不共点,则这条直线将平面分成_个部分【答案】【解析】分析:根据几何图形,列出前面几项,根据归纳推理和数列中的累加法即可得到结果。详解:1条直线将平面分成2个部分,即 2条直线将平面分成4个部分,即3条直线将平面分为7个部分,即4条直线将平面分为11个部分,即,所以 .根据累加法得所以 点睛:本题综合考查了数列的累加法、归纳推理的综合应用。在解题过程中,应用归纳推理是解决较难题目的一种思路和方法,通过分析具体项,找到一般规律,再分析解决问题,属于中档题。11在平面

    6、直角坐标系中,已知点是椭圆:上第一象限的点,为坐标原点,分别为椭圆的右顶点和上顶点,则四边形的面积的最大值为_【答案】【解析】分析:的面积的最大值当到直线距离最远的时候取得。详解:,当到直线距离最远的时候取得的最大值,设直线,所以,故的最大值为。点睛:分析题意,找到面积随到直线距离的改变而改变,建立面积与到直线距离的函数表达式,利用椭圆的参数方程求解距离的最值。本题还可以用几何法分析与直线平行的直线与椭圆相切时,为切点,到直线距离最大。12在的展开式中的所有的整数次幂项的系数之和为_【答案】122【解析】分析:根据二项式定理的通项公式,写出所有的整数次幂项的系数,再求和即可。详解:所以整数次幂

    7、项为为整数是,所以系数之和为122点睛:项式定理中的具体某一项时,写出通项的表达式,使其满足题目设置的条件。13湖面上有个相邻的小岛,现要建座桥梁,将这个小岛连接起来,共有_不同方案(用数字作答)【答案】135【解析】分析:个相邻的小岛一共可座桥梁,选座,减去不能彼此连接的即可。详解:个相邻的小岛一共可座桥梁,选座不能彼此连接,共135种。点睛:转化问题为组合问题。14一个袋中有形状、大小完全相同的个小球,其中个红球,其余为白球.从中一次性任取个小球,将“恰好含有个红球”的概率记为,则当_时,取得最大值【答案】20【解析】分析:由题意可知,满足超几何分布,列出的公式,建立与的表达式,求最大值。

    8、详解:,取得最大值,也即是取最大,所以:解得,故。点睛:组合数的最大值,可以理解为数列的最大项来处理。评卷人得分二、解答题15已知复数在复平面内对应的点位于第二象限,且满足.(1)求复数;(2)设复数满足:为纯虚数,求的值.【答案】(1);(2).【解析】分析:(1)解一元二次方程,得到,根据在复平面内对应的点位于第二象限,即可判断的取值。(2)根据复数的乘法运算、纯虚数的概念、模的定义,联立方程求得x、y的值,进而求得的值。详解:(1)因为,所以,又复数对应的点位于第二象限,所以;(2)因为,又为纯虚数,所以,有得,解得,或,;所以.点睛:本题考查了复数相等、纯虚数等概念和复数的混合运算,对

    9、基本的运算原理要清晰,属于基础题。16已知二阶矩阵对应的变换将点变换成,将点变换成.(1)求矩阵的逆矩阵;(2)若向量,计算.【答案】(1);(2)【解析】分析:(1)利用阶矩阵对应的变换的算法解出,再求(2)先计算矩阵的特征向量,再计算详解:(1),则,解得,所以,所以;(2)矩阵的特征多项式为 ,令,解得,从而求得对应的一个特征向量分别为,.令,求得,所以 .点睛:理解矩阵的计算规则和相互之间的转换。17在平面直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,圆极坐标方程为.(1)若直线与圆相切,求的值;(2)已知直线与圆交于,两点,记点、相应的参数分别为

    10、,当时,求的长.【答案】(1)或;(2)【解析】分析:(1)消元法解出直线的普通方程,利用直角坐标和极坐标的互化公式解出圆的直角坐标方程,直线与圆相切,则。(2)将直线的参数方程为代入圆的直角坐标方程并化简整理关于的一元二次方程。利用的几何意义求解问题。详解:(1)圆的直角坐标方程为,将直线的参数方程代入圆的直角坐标方程得,即为,因为直线与圆相切,所以,所以或,所以或;(2)将代入圆的直角坐标方程为,得,又,所以 , .点睛:将直线的参数方程为代入圆的直角坐标方程并化简整理关于的一元二次方程。利用的几何意义求解问题是解决直线上的定点与交点问题的常规解法。注意,要去绝对值符号,需判断交点与定点的

    11、位置关系,上方为正,下方为负。18将正整数排成如图的三角形数阵,记第行的个数之和为.(1)设,计算,的值,并猜想的表达式;(2)用数学归纳法证明(1)的猜想.【答案】(1);(2)见解析【解析】分析:直接计算,猜想:;(2)证明:当时,猜想成立. 设时,命题成立,即证明当时,成立。详解:(1)解:,猜想;(2)证明:当时,猜想成立.设时,命题成立,即,由题意可知 .所以 , ,所以时猜想成立.由、可知,猜想对任意都成立.点睛:推理与证明中,数学归纳法证明数列的通项公式是常见的解法。根据题意先归纳猜想,利用数学归纳法证明猜想。数学归纳法证明必须有三步:当时,计算得出猜想成立.当时,假设猜想命题成

    12、立,当时,证明猜想成立。19有甲、乙两个游戏项目,要参与游戏,均需每次先付费元(不返还),游戏甲有种结果:可能获得元,可能获得元,可能获得元,这三种情况的概率分别为,;游戏乙有种结果:可能获得元,可能获得元,这两种情况的概率均为.(1)某人花元参与游戏甲两次,用表示该人参加游戏甲的收益(收益=参与游戏获得钱数-付费钱数),求的概率分布及期望;(2)用表示某人参加次游戏乙的收益,为任意正整数,求证:的期望为.【答案】(1)分布列见解析,期望为;(2)见解析【解析】分析:(1)表示该人参加游戏甲的收益,可能取值为,分布列为:(2)用表示某人参加次游戏乙的收益可能取值为,(且),每次独立,获奖的概率

    13、为.满足二项分布。详解:(1)则的所有可能取值为, ;(2)证明:的所有可能取值为,(且),(且), , ,两式相加即得 ,所以.点睛:(1)离散型随机变量的分布列,根据题意,搞清随机变量的最小值和最大值,其它值随之确定。(2)根据题意,要能判断出是否为二项分布,抓题目的关键词:事件相互独立(放回),每次事件成功的概率相等.(3)二项分布的期望公式 ,方差20已知函数,其中,.(1)若,求的值;(2)若,求的最大值;(3)若,求证:.【答案】(1);(2);(3)见解析【解析】分析:(1)赋值法:求(2)先求通项公式,利用解出,设第项的系数最大,所以(3)时,利用组合数的公式化简求解。详解:(1),时, ,令得,令得 ,可得;(2),不妨设中,则 或,中的最大值为;(3)若, ,因为,所以 .点睛:(1)二项式定理求系数和的问题,采用赋值法。(2)求解系数的最大项,先设最大项的系数,注意所求的是第项的系数,计算不等式采用消去法化简计算,取整数。(3)组合数公式的计算整体变形,构造的结构,一般采用计算,不要展开。

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:江苏省无锡市2017_2018学年高二数学下学期期末考试试题理201808150325.doc
    链接地址:https://www.ketangku.com/wenku/file-328123.html
    相关资源 更多
  • 江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc
  • 江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc
  • 江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx
  • 湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc
  • 湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc
  • 湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc
  • 湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc
  • 江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc
  • 江西省重点高中2022学年高一数学上学期第三次月考试题.docx江西省重点高中2022学年高一数学上学期第三次月考试题.docx
  • 湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc
  • 江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc
  • 江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc
  • 湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc
  • 江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1