湖北省巴东一中高二数学教案 必修一:第一章 集合与函数概念(函数的概念).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湖北省巴东一中高二数学教案 必修一:第一章 集合与函数概念函数的概念 湖北省 巴东 一中 数学教案 必修 第一章 集合 函数 概念
- 资源描述:
-
1、1.2.1函数的概念一、教学目标1、 知识与技能:函数是描述客观世界变化规律的重要数学模型高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识2、过程与方法:(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;3、情态与价值,使学生感受到学习函数的必要性的重要性,激发学习的积极性。二、教学重点与难点:重点:理解函数的模型化
2、思想,用集合与对应的语言来刻画函数;难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;三、学法与教学用具1、学法:学生通过自学、思考、交流、讨论和概括,从而更好地完成本节课的教学目标 .2、教学用具:投影仪 .四、教学思路(一)创设情景,揭示课题1、复习初中所学函数的概念,强调函数的模型化思想;2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题3、分析、归纳以上三个实例,它们有什么共同点。4、引导学生应用集合与对应的语言
3、描述各个实例中两个变量间的依赖关系;5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系(二)研探新知1、函数的有关概念(1)函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数(function)记作:y=f(x),xA其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合f(x)| xA 叫做函数的值域(range)注意: “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g
4、(x)”;函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x(2)构成函数的三要素是什么?定义域、对应关系和值域(3)区间的概念区间的分类:开区间、闭区间、半开半闭区间;无穷区间;区间的数轴表示(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?通过三个已知的函数:y=ax+b (a0) y=ax2+bx+c (a0) y= (k0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会。师:归纳总结(三)质疑答辩,排难解惑,发展思维。1、如何求函数的定义域例1:已知函数f (x) = +(1)求函数的定义域;(2)求f(3),f ()的值;(3)当a0时
5、,求f(a),f(a1)的值.分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式解:略例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.分析:由题意知,另一边长为,且边长为正数,所以0x40.所以s= = (40x)x (0x40)引导学生小结几类函数的定义域:(1)如果f(x)是整式,那么函数的定义域是实数集R .(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合 .(3)如
6、果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集) (5)满足实际问题有意义.巩固练习:课本P19第12、如何判断两个函数是否为同一函数例3、下列函数中哪个与函数y=x相等?(1)y = ()2 ; (2)y = () ;(3)y = ; (4)y= 分析: 构成函数三个要素是定义域、对应关系和值域由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数) 两个函数相等当且仅当它们的定义域和对
7、应关系完全一致,而与表示自变量和函数值的字母无关。解:(略)课本P18例2(四)巩固深化,反馈矫正:(1)课本P19第3题(2)判断下列函数f(x)与g(x)是否表示同一个函数,说明理由? f ( x ) = (x 1) 0;g ( x ) = 1 f ( x ) = x; g ( x ) = f ( x ) = x 2;f ( x ) = (x + 1) 2 f ( x ) = | x | ;g ( x ) = (3)求下列函数的定义域 f(x) = + f(x) = (五)归纳小结从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;初步介绍了求函数定义域和判断同一函
8、数的基本方法,同时引出了区间的概念。 (六)设置问题,留下悬念1、课本P24习题12(A组) 第17题 (B组)第1题2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系。【A组】1下列各组函数中,表示同一函数的是( )A BC D 答案:C2.求下列函数定义域:;答案:【B组】1已知,则= -1 .2. 已知f(x+1)2x3x1,求f(-1)。 变:,求f(f(x) 解法一:先求f(x),即设x1t;(换元法) 解法二:先求f(x),利用凑配法; 解法三:令x1=1,则x2,再代入求。(特殊值法)3从集合a,b到集合1,2,3,可以建立
9、映射的个数是_9_.【C组】1已知二次函数,若,则的值为( A )A正数B负数 C0 D符号与a有关 2已知,则等于 ( C ) A. B. C. D. 122函数的表示法一教学目标1知识与技能(1)明确函数的三种表示方法;(2)会根据不同实际情境选择合适的方法表示函数;(3)通过具体实例,了解简单的分段函数及应用2过程与方法:学习函数的表示形式,其目的不仅是研究函数的性质和应用的需要,而且是为加深理解函数概念的形成过程3情态与价值让学生感受到学习函数表示的必要性,渗透数形结合思想方法。二教学重点和难点教学重点:函数的三种表示方法,分段函数的概念教学难点:根据不同的需要选择恰当的方法表示函数,
10、什么才算“恰当”?分段函数的表示及其图象三学法及教学用具1学法:学生通过观察、思考、比较和概括,从而更好地完成本节课的教学目标2教学用具:圆规、三角板、投影仪四教学思路 (一)创设情景,揭示课题我们在前两节课中,已经学习了函数的定义,会求函数的值域,那么函数有哪些表示的方法呢?这一节课我们研究这一问题(二)研探新知1函数有哪些表示方法呢?(表示函数的方法常用的有:解析法、列表法、图象法三种)2明确三种方法各自的特点?(解析式的特点为:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域列表法的特点为:不通过计算就知道自变量取某些值时函数的对应
11、值、图像法的特点是:能直观形象地表示出函数的变化情况)(三)质疑答辩,排难解惑,发展思维例1某种笔记本的单价是5元,买个笔记本需要元,试用三种表示法表示函数分析:注意本例的设问,此处“”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表解:(略)注意:函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等;解析法:必须注明函数的定义域; 象法:是否连线;列列表法:选取的自变量要有代表性,应能反映定义域的特征例2下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:第一次第二次第三次第四次第五次第六次王 伟988791928895张 城90768875868
12、0赵 磊686573727582班平均分88.278.385.480.375.782.6请你对这三位同学在高一学年度的数学学习情况做一个分析分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具?解:(略)注意:本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点:本例能否用解析法?为什么?例3画出函数的图象解:(略)例4某市郊空调公共汽车的票价按下列规则制定:(1)乘坐汽车5公里以内,票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算),已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)
13、设20个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象分析:本例是一个实际问题,有具体的实际意义,根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值解:(略)注意:本例具有实际背景,所以解题时应考虑其实际意义;象例3、例4中的函数,称为分段函数分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况(四)巩固深化,反馈矫正 (1)课本P23 练习第1,2,3题(2)国内投寄信函(外埠),假设每封信函不超过20,付邮资80分,超过20而不超过40付邮资160分,每封(0100的信函应付邮资为(单位
14、:分)(五)归纳小结理解函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数,注意分段函数的表示方法及其图象的画法。 (六)设置问题,留下悬念 (1)课本P24习题(A组)8,9;(2)如图,把截面半径为25cm的圆形木头锯成矩形木料,如果矩形的边长为,面积为,把表示成的函数 【A组】1已知A、B两地相距150千米,某人开汽车以60千米/小时的速度从A地到达B地,在B地停留1小时后再以50千米/小时的速度返回A地,把汽车离开A地的距离x表示为时间t(小时)的函数表达式是( D )( )Ax=60t Bx=60t+50tCx= Dx=某学生离家去学校,由于怕迟到,所以一开始就跑步
15、,等跑累了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是( ). ;若 .dd0t0 tOAdd0t0 tOBdd0t0 tOCdd0t0 tOD答案:;【B组】1下列图中,画在同一坐标系中,函数与函数的图象只可能是( )xyAxyBxyCxyD设,则( )A B0 C D【C组】已知f满足f(ab)=f(a)+ f(b),且f(2)=,那么等于( )ABCD某地的中国移动“神州行”卡与中国联通130网的收费标准如下表: 网络月租费本地话费长途话费甲:联通130网 12元每分钟0.36元每6秒钟0.06元乙:移动“神州行”卡 无每
16、分钟0.6元每6秒钟0.07元(注:本地话费以分钟为单位计费,长途话费以6秒钟为单位计费)若某人每月拨打本地电话时间是长途电话时间的5倍,且每月通话时间(分钟)的范围在区间(60,70)内,则选择较为省钱的网络为( ) A.甲B.乙 C.甲乙均一样 D.分情况确定1.2.2 映射一教学目标1知识与技能:(1)了解映射的概念及表示方法;(2)结合简单的对应图表,理解一一映射的概念2过程与方法(1)函数推广为映射,只是把函数中的两个数集推广为两个任意的集合;(2)通过实例进一步理解映射的概念;(3)会利用映射的概念来判断“对应关系”是否是映射,一一映射3情态与价值映射在近代数学中是一个极其重要的概
17、念,是进一步学习各类映射的基础二教学重点:映射的概念教学难点:映射的概念三学法与教学用具1学法:通过丰富的实例,学生进行交流讨论和概括;从而完成本节课的教学目标;2教学用具:投影仪四教学思路(一)创设情景,揭示课题复习初中常见的对应关系1对于任何一个实数,数轴上都有唯一的点和它对应;2对于坐标平面内任何一个点A,都有唯一的有序实数对()和它对应;3对于任意一个三角形,都有唯一确定的面积和它对应;4某影院的某场电影的每一张电影票有唯一确定的座位与它对应;5函数的概念(二)研探新知1我们已经知道,函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
