湖北省武汉市吴家山中学高一数学必修四同步辅导 3.1两角和与差的正弦、余弦和正切公式.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湖北省武汉市吴家山中学高一数学必修四同步辅导 3.1两角和与差的正弦、余弦和正切公式 湖北省 武汉市 吴家山 中学 数学 必修 同步 辅导 3.1 正弦 余弦 正切 公式
- 资源描述:
-
1、第三章 三角恒等变换章前概览内容提要:学法指津:本章的特点是公式多,运算技巧强,因此学习时应遵循以下原则:1熟记课本中出现的公式和经常用到的有关重要结论,并注意其变形应用2对教材中出现的公式要做到真正理解、记准、用活,并知道公式的来龙去脉,能灵活运用公式解决问题3转化与化归思想是本章应用时最重要的,也是最基本的数学思想,它贯串于本章内容的始终,要认真体会理解,解题过程中要学会灵活运用第一节 两角和与差的正弦、余弦和正切公式学点:探究与梳理自主探究探究问题:在平面直角坐标系中作单位圆O,以Ox为始边作角,它们的终边与单位圆O的交点分别为A、B,则=_,=_,=_探究问题:1两角差的余弦公式=_(
2、这个公式对任意的都成立)2两角和的余弦公式=_3两角和的正弦公式=_4两角差的正弦公式=_5(1)=_;(2)=_探究问题:1在中,令_,可得到=_,简记为2在中,令_,可得到=_ _,简记为3在中,令_,可得到=_,简记为4在中考虑可将变形为=_=_,简记为重点把握1两角和的余弦与两角和、差的正弦、正切公式:(1)理顺公式间的逻辑关系:以代以代诱导公式(2)注意公式的结构特征和符号规律:对于公式,可记为“同名相乘,符号反”,对于公式,可记为“异名相乘,符号同”(3)公式应用时要注意的问题:符号变化规律可间记为“分子同,分母反”;公式适用范围:都不为2二倍角的正弦、余弦、正切公式:(1)在公式
3、,中,要求角为任意角;而公式中则要求角(2)一般来说, (3); (4)对“二倍角”的广义理解:4是2的两倍,是的两倍,是的两倍等 (5)公式变形:降幂公式 3如何将三角函数式化成一个角的一个三角函数的形式? (1)提取,增设辅助角,逆用两角和的正弦公式,化为; (2)辅助角大小确定:一般用的正切值确定的大小,但的具体范围必须用来确定 (3)不仅可化为,也可化为,但是的大小不一样题例:解析与点拨例1 (给角求值)求sin105的值.解析:sin105=sin(60+45)=sin60cos45+cos60sin45点拨:有几个常见值要熟悉,如sin15=cos75=;sin75=cos15=;
4、tan15=;tan75=等. 变式训练1:求的值例2 (给值求值)已知是第二象限角,求,的值解析:由是第二象限角,得,; ; 变式训练2:已知,求的值例3 已知、为锐角,求的值解析:(1)为锐角且,又、均为锐角,则,又,=点拨:(1)本题中巧用角的变换,建立了“未知”与“已知”间的桥梁;(2)常见角的变换有:,等.变式训练3:已知,求的值例4(给值求角)已知、均为锐角,且,求的值解析:、为锐角,且, , 变式训练4:已知,且,求的值点拨:解给值求角问题的一般步骤:(1)求出角的某一个三角函数值;(2)确定角所在的范围;(3)根据角的范围写出所求的角.特别注意选取角的某一三角函数值时,是选正弦
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-340516.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
