2021-2022高中数学人教版必修2教案:3-3-4两条平行直线间的距离 (系列一) WORD版含答案.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021-2022高中数学人教版必修2教案:3-3-4两条平行直线间的距离 系列一 WORD版含答案 2021 2022 高中 学人 必修 教案 平行 直线 距离 系列 WORD 答案
- 资源描述:
-
1、3.3.4 两条平行直线间的距离教学分析 点到直线的距离是“直线与方程”这一节的重点内容,它是解决点线、线线间的距离的基础,也是研究直线与圆的位置关系的主要工具.点到直线的距离公式的推导方法很多,可探究的题材非常丰富.除了本节课可能探究到的方法外,还有应用三角函数、应用向量等方法.因此“课程标准”对本节教学内容的要求是:“探索并掌握点到直线的距离公式,会求两条平行线间的距离.”希望通过本节课的教学,能让学生在公式的探索过程中深刻地领悟到蕴涵其中的重要的数学思想和方法,学会利用数形结合思想,化归思想和分类方法,由浅入深,由特殊到一般地研究数学问题,培养学生的发散思维.根据本节课的内容特点,学习方
2、法为接受学习与发现学习相结合.学生的探究并不是漫无边际的探究,而是在教师引导之下的探究;教师也要提供必要的时间和空间给学生展示自己思维过程,使学生在教师和其他同学的帮助下,充分体验作为学习主体进行探索、发现和创造的乐趣.三维目标1.让学生掌握点到直线的距离公式,并会求两条平行线间的距离.2.引导学生构思距离公式的推导方案,培养学生观察、分析、转化、探索问题的能力,鼓励创新.培养学生勇于探索、善于研究的精神,学会合作.重点难点教学重点:点到直线距离公式的推导和应用.教学难点:对距离公式推导方法的感悟与数学模型的建立.课时安排1课时教学过程导入新课思路1.点P(0,5)到直线y=2x的距离是多少?
3、更进一步在平面直角坐标系中,如果已知某点P的坐标为(x0,y0),直线l的方程是Ax+By+C=0,怎样由点的坐标和直线的方程直接求点P到直线l的距离呢?这节课我们就来专门研究这个问题.思路2.我们已学习了两点间的距离公式,本节课我们来研究点到直线的距离.如图1,已知点P(x0,y0)和直线l:Ax+By+C=0,求点P到直线l的距离(为使结论具有一般性,我们假设A、B0).图1推进新课新知探究提出问题已知点P(x0,y0)和直线l:Ax+By+C=0,求点P到直线l的距离.你最容易想到的方法是什么?各种做法的优缺点是什么?前面我们是在A、B均不为零的假设下推导出公式的,若A、B中有一个为零,
4、公式是否仍然成立?回顾前面证法一的证明过程,同学们还有什么发现吗?(如何求两条平行线间的距离)活动:请学生观察上面三种特殊情形中的结论:()x0=0,y0=0时,d=;()x00,y0=0时,d=;()x0=0,y00时,d=.观察、类比上面三个公式,能否猜想:对任意的点P(x0,y0),d=?学生应能得到猜想:d=.启发诱导:当点P不在特殊位置时,能否在距离不变的前提下适当移动点P到特殊位置,从而可利用前面的公式?(引导学生利用两平行线间的距离处处相等的性质,作平行线,把一般情形转化为特殊情形来处理)证明:设过点P且与直线l平行的直线l1的方程为Ax+By+C1=0,令y=0,得P(,0).
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-461973.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
