2021-2022高中数学人教版必修2教案:4-2-1直线与圆的位置关系 (系列一) WORD版含答案.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021-2022高中数学人教版必修2教案:4-2-1直线与圆的位置关系 系列一 WORD版含答案 2021 2022 高中 学人 必修 教案 直线 位置 关系 系列 WORD 答案
- 资源描述:
-
1、4.2.1 直线与圆的位置关系(一)导入新课思路1.一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70 km处,受影响的范围是半径长为30 km的圆形区域.已知港口位于台风中心正北40 km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?图2分析:如图2,以台风中心为原点O,以东西方向为x轴,建立直角坐标系,其中,取10 km为单位长度.则台风影响的圆形区域所对应的圆心为O的圆的方程为x2+y2=9;轮船航线所在的直线l的方程为4x+7y-28=0.问题归结为圆心为O的圆与直线l有无公共点.因此我们继续研究直线与圆的位置关系.(二)推进新课、新知探究、提出问
2、题过圆上一点可作几条切线?如何求出切线方程?过圆外一点可作几条切线?如何求出切线方程?过圆内一点可作几条切线?你能概括出求圆切线方程的步骤是什么吗?如何求直线与圆的交点?如何求直线与圆的相交弦的长?讨论结果:过圆上一点可作一条切线,过圆x2+y2=r2上一点(x0,y0)的切线方程是x0x+y0y=r2;过圆(x-a)2+(y-b)2=r2上一点(x0,y0)的切线方程是(x0-a)(x-a)+(y0-b)(y-b)=r2.过圆外一点可作两条切线,求出切线方程有代数法和几何法.代数法的关键是把直线与圆相切这个几何问题转化为联立它们的方程组只有一个解的代数问题.可通过一元二次方程有一个实根的充要
3、条件=0去求出k的值,从而求出切线的方程.用几何方法去求解,要充分利用直线与圆相切的几何性质,圆心到切线的距离等于圆的半径(d=r),求出k的值.过圆内一点不能作圆的切线.求圆切线方程,一般有三种方法,一是设切点,利用中的切线公式法;二是设切线的斜率,用判别式法;三是设切线的斜率,用图形的几何性质来解,即圆心到切线的距离等于圆的半径(d=r),求出k的值.把直线与圆的方程联立得方程组,方程组的解即是交点的坐标.把直线与圆的方程联立得交点的坐标,结合两点的距离公式来求;再就是利用弦心距、弦长、半径之间的关系来求.(三)应用示例思路1例1 过点P(-2,0)向圆x2+y2=1引切线,求切线的方程.
4、图3解:如图3,方法一:设所求切线的斜率为k,则切线方程为y=k(x+2),因此由方程组得x2+k2(x+2)2=1.上述一元二次方程有一个实根,=16k4-4(k2+1)(4k2-1)=12k2-4=0,k=,所以所求切线的方程为y=(x+2).方法二:设所求切线的斜率为k,则切线方程为y=k(x+2),由于圆心到切线的距离等于圆的半径(d=r),所以d=1,解得k=.所以所求切线的方程为y=(x+2).方法三:利用过圆上一点的切线的结论.可假设切点为(x0,y0),此时可求得切线方程为x0x+y0y=1.然后利用点(-2,0)在切线上得到-2x0=1,从中解得x0=-.再由点(x0,y0)
5、在圆上,所以满足x02+y02=1,既+y02=1,解出y0=.这样就可求得切线的方程为,整理得y=(x+2).点评:过圆外一点向圆可作两条切线;可用三种方法求出切线方程,其中以几何法“d=r”比较好(简便).变式训练 已知直线l的斜率为k,且与圆x2+y2=r2只有一个公共点,求直线l的方程.活动:学生思考,观察题目的特点,见题想法,教师引导学生考虑问题的思路,必要时给予提示,直线与圆只有一个公共点,说明直线与圆相切.可利用圆的几何性质求解.图4解:如图4,方法一:设所求的直线方程为y=kx+b,由圆心到直线的距离等于圆的半径,得d=r,b=r,求得切线方程是y=kxr.方法二:设所求的直线
6、方程为y=kx+b,直线l与圆x2+y2=r2只有一个公共点,所以它们组成的方程组只有一组实数解,由,得x2+k2(x+b)2=1,即x2(k2+1)+2k2bx+b2=1,=0得b=r,求得切线方程是y=kxr.例2 已知圆的方程为x2+y2+ax+2y+a2=0,一定点为A(1,2),要使过定点A(1,2)作圆的切线有两条,求a的取值范围.活动:学生讨论,教师指导,教师提问,学生回答,教师对学生解题中出现的问题及时处理,利用几何方法,点A(1,2)在圆外,即到圆心的距离大于圆的半径.解:将圆的方程配方得(x+)2+(y+1)2=,圆心C的坐标为(,1),半径r=,条件是43a20,过点A(
7、1,2)所作圆的切线有两条,则点A必在圆外,即.化简,得a2+a+90,由解得a,aR.所以a.故a的取值范围是(,).点评:过圆外一点可作圆的两条切线,反之经过一点可作圆的两条切线,则该点在圆外.同时注意圆的一般方程的条件.思路2例1 已知过点M(-3,-3)的直线l被圆x2+y2+4y-21=0所截得的弦长为45,求直线l的方程.活动:学生思考或讨论,教师引导学生考虑问题的思路,求直线l的方程,一般设点斜式,再求斜率.这里知道弦长,半径也知道,所以弦心距可求,如果设出直线的方程,由点到直线的距离等于弦心距求出斜率;另外也可利用弦长公式,结合一元二次方程根与系数的关系求解.解法一:将圆的方程
8、写成标准形式有x2+(y+2)2=25,所以圆心为(0,-2),半径为5.因为直线l被圆x2+y2+4y-21=0所截得的弦长为4,所以弦心距为=,圆心到直线的距离为,由于直线过点M(-3,-3),所以可设直线l的方程为y+3=k(x+3),即kx-y+3k-3=0.根据点到直线的距离公式,圆心到直线的距离为,因此d=,两边平方整理得2k2-3k-2=0,解得k=,k=2.所以所求的直线l的方程为y+3=(x+3)或y+3=2(x+3),即x+2y+9=0或2x-y+3=0.解法二:设直线l和已知圆x2+y2+4y-21=0的交点为A(x1,y1),B(x2,y2),直线l的斜率为k,由于直线
9、过点M(-3,-3),所以可设直线l的方程为y+3=k(x+3),即y=kx+3k-3.代入圆的方程x2+y2+4y-21=0,并整理得(1+k2)x2+2k(3k-1)x+(3k-1)2-25=0.结合一元二次方程根与系数的关系有x1+x2=,x1x2=. |AB|=因为|AB|=45,所以有(1+k2)(x1+x2)2-4x1x2=80. 把式代入式,得(1+k2)2-4=80.经过整理,得2k2-3k-2=0,解得k=,k=2.所以所求的直线l的方程为y+3=(x+3)或y+3=2(x+3),即x+2y+9=0或2x-y+3=0.点评:解法一突出了适当地利用图形的几何性质有助于简化计算,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-461989.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
