河北省南宫市奋飞中学高中数学必修5:1-1正弦定理和余弦定理 复习课 .doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北省南宫市奋飞中学高中数学必修5:1-1正弦定理和余弦定理 复习课 河北省 南宫市 奋飞 中学 高中数学 必修 正弦 定理 余弦 复习
- 资源描述:
-
1、课题名称:正弦定理和余弦定理复习课学科年级:高三教材版本:人教A版一、教学内容分析本章内容准备复习两课时。本节课是第一课时。标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后应落实在解三角形的应用上。二、教学目标知识目标:(1)学生通过对任意三角形边长和角度关系的探索,掌握正弦、余弦定理的内容及其证明方法;会运用正、余弦定理与三角形内角和定理,面积公式解斜三角形的两类基本问题。(2)学生学会分析问题,合理选用定理解决三角形综合问题。能力目标:培养学生提出问题、正确分析问题、独立解决问题的能力,培养学生在方程思想指导下处理解三角形问题的运算能力,培养学生合情推理探索数学
2、规律的数学思维能力。情感目标:通过生活实例探究回顾三角函数、正余弦定理,体现数学来源于生活,并应用于生活,激发学生学习数学的兴趣,并体会数学的应用价值,在教学过程中激发学生的探索精神。三、学习者特征分析学生通过必修5的学习,对正弦定理、余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题,怎样合理选择定理进行边角关系转化从而解决三角形综合问题,学生还需通过复习提点有待进一步理解和掌握。作为复习课一方面要将本章知识作一个梳理,另一方面要通过整理归纳帮助学生学会分析问题,合理选用并熟练运用正弦定理、余弦定理等知识和方法解决三角形综合问题和实际应用问题。四、教学过程(一) 创设情境、揭示提出课
3、题引例:要测量南北两岸A、B两个建筑物之间的距离,在南岸选取相距A点km的C点,并通过经纬仪测的,你能计算出A、B之间的距离吗?若人在南岸要测量对岸B、D两个建筑物之间的距离,该如何进行?(二) 复习回顾、知识梳理1 正弦定理:正弦定理的变形:(1)(2);;利用正弦定理,可以解决以下两类有关三角形的问题.(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角.(从而进一步求出其他的边和角)2余弦定理: a2=b2+c22bccosA;b2=c2+a22cacosB;c2=a2+b22abcosC.cosA=;cosB=;cosC=.利用余弦定理,可以解决以下
4、两类有关三角形的问题:(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角. 3三角形面积公式:(三) 自主检测、知识巩固1.;2. 3. (四) 典例导航、知识拓展【例1】 ABC的三个内角A、B、C的对边分别是a、b、c,如果a2=b(b+c),求证:A=2B.剖析:研究三角形问题一般有两种思路.一是边化角,二是角化边.证明:用正弦定理,a=2RsinA,b=2RsinB,c=2RsinC,代入a2=b(b+c)中,得sin2A=sinB(sinB+sinC)sin2Asin2B=sinBsinC因为A、B、C为三角形的三内角,所以sin(A+B)0.所以sin(AB
5、)=sinB.所以只能有AB=B,即A=2B.评述:利用正弦定理,将命题中边的关系转化为角间关系,从而全部利用三角公式变换求解.思考讨论:该题若用余弦定理如何解决?【例2】已知a、b、c分别是ABC的三个内角A、B、C所对的边,(1) 若ABC的面积为,c=2,A=600,求边a,b的值;(2) 若a=ccosB,且b=csinA,试判断ABC的形状。 (五) 变式训练、归纳整理【例3】已知a、b、c分别是ABC的三个内角A、B、C所对的边,若bcosC=(2a-c)cosB(1) 求角B(2) 设,求a+c的值。剖析:同样知道三角形中边角关系,利用正余弦定理边化角或角化边,从而解决问题,此题
6、所变化的是与向量相结合,利用向量的模与数量积反映三角形的边角关系,把本质看清了,问题与例2类似解决。此题分析后由学生自己作答,利用实物投影集体评价,再做归纳整理。(解答略)课时小结(由学生归纳总结,教师补充)1. 解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理2. 根据所给条件确定三角形的形状,主要有两种途径:化边为角;化角为边.并常用正余弦定理实施边角转化。3. 用正余弦定理解三角形问题可适当应用向量的数量积求三角形内角与应用向量的模求三角形的边长。4. 应用问题可利用图形将题意理解清楚,然后用数学模型解决问题。5. 正余弦定理与三角函数、向量、不等式等知识相
7、结合,综合运用解决实际问题。课后作业:材料三级跳五、教学策略选择与信息技术融合的设计教师活动预设学生活动设计意图师生活动:教师:展示情景图如图1,船从港口B航行到港口C,测得BC的距离为,船在港口C卸货后继续向港口A航行,由于船员的疏忽没有测得CA距离,如果船上有测角仪我们能否计算出A、B的距离?学生:思考提出测量角A,C学生举例引入生活情境激发学生的学习欲望,自然引入新课,同时与其实际相联系,拓宽学生思维,发展他们联想、类比能力。教师:若已知测得, ,要计算A、B两地距离,你 (图1)有办法解决吗?学生:思考交流,画一个三角形,使得为6cm, ,量得距离约为4.9cm,利用三角形相似性质可知
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
