山西省太原市2020届高三数学五月模拟考试试题(八)理(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山西省 太原市 2020 届高三 数学 五月 模拟考试 试题 解析
- 资源描述:
-
1、山西省太原市2020届高三数学五月模拟考试试题(八)理(含解析)一、选择题1.已知集合,则( )A. B. C. D. 【答案】A【解析】【分析】首先解不等式得到或,再根据即可得到答案.【详解】因为或,所以,故选:A【点睛】本题主要考查集合的运算,同时考查了一元二次不等式的解法,属于简单题.2.已知是实数,是纯虚数,则 等于( )A. B. C. D. 【答案】D【解析】分析:由题意结合复数的运算法则整理计算即可求得最终结果.详解:由题意可知:,为纯虚数,则:,据此可知.本题选择D选项.点睛:本题主要考查复数的运算法则及其应用,意在考查学生的转化能力和计算求解能力.3.已知,则的大小关系为(
2、)A. B. C. D. 【答案】A【解析】【分析】利用等中间值区分各个数值的大小【详解】,故,所以故选A【点睛】本题考查大小比较问题,关键选择中间量和函数的单调性进行比较4.下边程序框图的算法源于我国古代闻名中外的中国剩余定理.表示正整数除以正整数的余数为,例如.执行该程序框图,则输出的等于( )A. B. C. D. 【答案】D【解析】【分析】根据程序框图依次执行循环,直至跳出循环,输出结果.【详解】继续执行循环:继续执行循环:继续执行循环:继续执行循环:继续执行循环:继续执行循环:跳出循环,输出故选:D【点睛】本题考查循环结构流程图,考查基本分析求解能力,属基础题.5.若是两个非零向量,
3、且,则向量与夹角的取值范围是( )A. B. C. D. 【答案】C【解析】【分析】根据题意,设,向量与夹角为,又由,由向量模的计算公式变形可得:,进而可得的值,由数量积公式可得,结合的范围,分析可得的范围,结合余弦函数的性质分析可得答案【详解】解:根据题意,设,则,再设向量与夹角为,则有,变形可得:,则有,变形可得,则,又由,则,则有,又由,则有,即的取值范围为;故选:C【点睛】本题考查向量数量积的计算,涉及向量夹角的计算,属于中档题6.函数的图象大致为( )A. B. C. D. 【答案】A【解析】【分析】设,用导数法可得,从而有,可得确定选项.【详解】设,所以,当时,当时,所以,所以,所
4、以,所以,排除B,C,D.故选A【点睛】本题主要考查由函数的解析式识别函数图象,还考查了转化求解问题的能力,属于中档题.7.圆周率是数学中一个非常重要的数,历史上许多中外数学家利用各种办法对进行了估算.现利用下列实验我们也可对圆周率进行估算.假设某校共有学生N人,让每人随机写出一对小于1的正实数a,b,再统计出a,b,1能构造锐角三角形的人数M,利用所学的有关知识,则可估计出的值是( )A. B. C. D. 【答案】B【解析】【分析】首先求出0a1,0b1,构成的区域面积,然后利用余弦定理求出满足是锐角三角形所构成的区域,然后利用几何概型面积比即可求解.【详解】学校共有学生N人,每人随机写出
5、一对小于1的正实数a,b,得到N个实数对(a,b),因为0a1,0b1,所以N个实数对(a,b)都在边长为1的正方形AOBC内,如图所示:若a,b,1能构造锐角三角形,因为1是最长边,所以1所对的角为锐角,所以,即a2+b21,所以N对实数对落在单位圆x2+y2=1外的有M对,由几何概率的概率公式可得:,所以,故选:B.【点睛】本题考查了几何概型面积比,几何概型的应用,解题的关键是求出满足条件的事件所构成的区域面积,属于基础题.8.设奇函数在上为增函数,且,则不等式的解集为( )A. B. C. D. 【答案】D【解析】由f(x)为奇函数可知,0时,f(x)0f(1);当x0f(1)又f(x)
6、在(0,)上为增函数,奇函数f(x)在(,0)上为增函数所以0x1,或1x0. 选D点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内9.过抛物线y2=4x的焦点的直线l与抛物线交于A,B两点,设点M(3,0).若MAB的面积为,则|AB|=( )A. 2B. 4C. D. 8【答案】D【解析】【分析】设直线l的方程为x=ty+1,将直线与抛物线联立,利用韦达定理以及弦长公式表示出|AB|,根据三角形的面积求出|y1y2|=4,代入计算即可求解.【详解】抛物线y2=4x的焦点F为(1,0)
7、,可设直线l的方程为x=ty+1,代入抛物线方程,可得y24ty4=0,设A(x1,y1),B(x2,y2),可得y1+y2=4t,y1y2=4,则|AB|.|y1y2| . .,MAB的面积为|MF|.|y1y2|2|y1y2|=4,即4,解得t=1,则|AB| .8,故选:D.【点睛】本题考查了直线与抛物线的位置关系、弦长公式,考查了基本运算求解能力,属于基础题.10.已知数列an的前n项和为Sn,且满足an.数列bn满足则数列bn的前100项和T100为( )A. B. C. D. 【答案】C【解析】【分析】由已知求出,归纳猜测出,再用数学归纳法证明猜测对于成立,进而求出数列bn通项公式
8、,用裂项相消法,即可求出结论.【详解】,当n=1时,有a1,解得a1;当n=2时,可解得a2,故猜想:an,下面利用数学归纳法证明猜想:当n=1,2时,由以上知道an显然成立;假设当n=k(k2)时,有ak成立,此时Sk成立,那么当n=k+1时,有,解得ak+1,这说明当n=k+1时也成立.由知:an.,数列bn的前100项和.故选:C.【点睛】本题考查数学归纳法证明数列通项公式,以及裂项相消法求数列前项和,考查计算求解能力,属于中档题.11.对于函数.有下列说法:的值城为;当且仅当时,函数取得最大值;函数的最小正周期是;当且仅当时,.其中正确结论的个数是( )A. 1B. 2C. 3D. 4
9、【答案】B【解析】【分析】根据题意,先得到,作出函数的图像,结合函数图像,逐项判断,即可得出结果.【详解】因为,作出函数的图象,如图所示:所以,的值城为,错误;函数的最小正周期是,错误;当且仅当时,函数取得最大值,正确;当且仅当时,正确.故选:B.【点睛】本题主要考查三角函数的性质,熟记正弦函数与余弦函数的图像和性质即可,属于常考题型.12.三棱锥中,为等边三角形,二面角的余弦值为,当三棱锥的体积最大时,其外接球的表面积为.则三棱锥体积的最大值为( )A. B. C. D. 【答案】D【解析】【分析】由已知作出图象,找出二面角的平面角,设出的长,即可求出三棱锥的高,然后利用基本不等式即可确定三
10、棱锥体积的最大值(用含有长度的字母表示),再设出球心,由球的表面积求得半径,根据球的几何性质,利用球心距,半径,底面半径之间的关系求得的长度,则三棱锥体积的最大值可求.【详解】如图所示,过点作面,垂足为,过点作交于点,连接,则为二面角的平面角的补角,即有,易知面,则,而为等边三角形,为中点,设,则c,故三棱锥体积为:,当且仅当时,体积最大,此时共线.设三棱锥的外接球的球心为,半径为,由已知,得.过点作于F,则四边形为矩形,则, ,在中,解得三棱锥的体积的最大值为:.故选:D.【点睛】本题考查三棱锥体积最值的求法与三棱锥外接球的表面积的求法,涉及二面角的运用,基本不等式的应用,以及球的几何性质的
11、应用,属于难题.二、填空题13.已知的展开式中,的系数为,则正实数_【答案】【解析】【分析】,然后利用展开式通项公式研究【详解】解:,故原式展开式中,含的项为,令,得,或(舍去),故答案为:【点睛】本题主要考查二项展开式通项公式的应用,属于基础题14.已知双曲线的左右顶点分别为,点是双曲线上一点,若为等腰三角形,则双曲线的离心率为_.【答案】【解析】【分析】首先根据题意画出图形,由已知条件求出,代入双曲线方程得到,再求离心率即可.【详解】如图所示:过点做轴,垂足为.因为为等腰三角形,所以,又因为,所以.,故.因为点在双曲线上,所以,即.故答案为:【点睛】本题主要考查双曲线离心率的求法,同时考查
12、了数形结合的思想,属于中档题.15.已知数列an满足(nN*),且a2=6,则an的通项公式为_.【答案】【解析】【分析】由题意令n=1可得a1,当时,转化条件可得,进而可得,即可得解.【详解】因为数列an满足(nN*),所以,当n=1时,即a1=1,当时,由可得,数列从第二项开始是常数列,又,又满足上式,.故答案为:.【点睛】本题考查了利用数列的递推公式求数列的通项公式,考查了构造新数列的能力与运算求解能力,合理构造新数列是解题的关键,同时要注意n的取值范围,属于中档题.16.改革开放40年来,我国城市基础设施发生了巨大的变化,各种交通工具大大方便了人们的出行需求.某城市的A先生实行的是早九
13、晚五的工作时间,上班通常乘坐公交或地铁加步行.已知从家到最近的公交站或地铁站都需步行5分钟,乘坐公交到离单位最近的公交站所需时间Z1(单位:分钟)服从正态分布N(33,42),下车后步行再到单位需要12分钟;乘坐地铁到离单位最近的地铁站所需时间Z2(单位:分钟)服从正态分布N(44,22),从地铁站步行到单位需要5分钟.现有下列说法:若8:00出门,则乘坐公交一定不会迟到;若8:02出门,则乘坐公交和地铁上班迟到的可能性相同;若8:06出门,则乘坐公交比地铁上班迟到的可能性大;若8:12出门,则乘坐地铁比公交上班迟到的可能性大.则以上说法中正确的序号是_.参考数据:若ZN(,2),则P(Z+)
14、=0.6826,P(2Z+2)=0.9544,P(3Z+3)=0.9974【答案】【解析】【分析】利用正态分布对每一个说法求解其概率,逐项分析,即可选出正确答案【详解】解:若8:00出门,江先生乘坐公交,从家到车站需要5分钟,下车后步行再到单位需要12分钟,乘坐公交到离单位最近的公交站所需时间服从正态分布,故,江先生仍有可能迟到,只不过概率较小,故错误;若8:02出门,江先生乘坐公交,从家到车站需要5分钟,下车后步行再到单位需要12分钟,乘坐公交到离单位最近的公交站所需时间服从正态分布,故当满足P(Z41)时,江先生乘坐公交不会迟到;若8:02出门,江先生乘坐地铁,从家到车站需要5分钟,下地铁
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
