数学家:欧几里得的故事.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学家 欧几里得 故事
- 资源描述:
-
1、数学家:欧几里得的故事言传身教欧几里得大约生于公元前325年,他是古希腊数学家,他的名字与几何学结下了不解之缘,他因为编著几何原本而闻名于世,但关于他的生平事迹知道的却很少,他是亚历山大学派的奠基人。早年可能受教于柏拉图,应托勒密王的邀请在亚历山大授徒,托勒密曾请教欧几里得,问他是否能把证明搞得稍微简单易懂一些,欧几里得顶撞国王说:“在几何学中是没有皇上走的平坦之道的。”他是一位温良敦厚的教育家。另外有一次,一个学生刚刚学完了第一个命题,就问:“学了几何学之后将能得到些什么?”欧几里得随即叫人给他三个钱币,说:“他想在学习中获取实利。”足见,欧几里得治学严谨,反对不肯刻苦钻研投机取巧的思想作风
2、。在公元前6世纪,古埃及、巴比伦的几何知识传入希腊,和希腊发达的哲学思想,特别是形式逻辑相结合,大大推进了几何学的发展。在公元前6世纪到公元前3世纪期间,希腊人非常想利用逻辑法则把大量的、经验性的、零散的几何知识整理成一个严密完整的系统,到了公元前3世纪,已经基本形成了“古典几何”,从而使数学进入了“黄金时代”。柏拉图就曾在其学派的大门上书写大型条幅“不懂几何学的人莫入”。欧几里得的几何原本正是在这样一个时期,继承和发扬了前人的研究成果,取之精华汇集而成的。几何原本欧氏几何原本推论了一系列公理、公设,并以此作为全书的起点。共13卷,目前中学几何教材的绝大部分都是欧氏几何原本的内容。勾股定理在欧
3、氏几何原本中的地位是很突出的,在西方,勾股定理被称作毕达哥拉斯定理,但是追究其发现的时间,在我国和古代的巴比伦、印度都比毕达哥拉斯早几百年,所以我们称它勾股定理或商高定理。在欧氏几何原本中,勾股定理的证明方法是:以直角三角形的三条边为边,分别向外作正方形,然后利用面积方法加以证明,人们非常赞同这种巧妙的构思,因此目前中学课本中还普遍保留这种方法。据说,英国的哲学家霍布斯一次偶然翻阅欧氏的几何原本,看到勾股定理的证明,根本不相信这样的推论,看过后十分惊讶,情不自禁地喊道:“上帝啊,这不可能”,于是他就从后往前仔细地阅读了每个命题的证明,直到公理和公设,最终还是被其证明过程的严谨、清晰所折服。欧氏
4、几何原本的部分内容与早期智人学派研究三个著名几何作图问题有关,特别是圆内接正多边形的作图方法。欧氏的几何原本只把用没有刻度的直尺画直线,用圆规画圆列为公理,限定了“尺规”作图。于是几何作图就出现了“可能”与“不可能”的情况。在这里欧几里得只给出了正三、四、五、六、十五边形的作法,加上连续地二等分弧,可以扩展到正2n、3(2n)、5(2n)、15(2n)边形。因此,我们可以想象欧几里得一定还尝试过别的正多边形的作图方法,只是没有作出来而已。所以欧氏几何原本问世后,正多边形作图引起了人们的极大兴趣。欧氏几何原本中的比例论,是全书的最高成就。在这之前,毕达哥拉斯派也有比例论,但并不适用于不可公度的量
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
英语必修Ⅴ外研版MODULE2课件(共107张)语法和语言结构.ppt
