分享
分享赚钱 收藏 举报 版权申诉 / 23

类型2022-2023学年基础强化人教版数学八年级上册期中定向训练试题 B卷(详解版).docx

  • 上传人:a****
  • 文档编号:638039
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:23
  • 大小:478.58KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022-2023学年基础强化人教版数学八年级上册期中定向训练试题 B卷详解版 2022 2023 学年 基础 强化 人教版 数学 年级 上册 期中 定向 训练 试题 详解
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中定向训练试题 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、两个直角三角板如图摆放,其中,AB与DF交于点M若,则的大小为()A

    2、BCD2、若菱形ABCD的一条对角线长为8,边CD的长是方程x210x+240的一个根,则该菱形ABCD的周长为()A16B24C16或24D483、如图,已知,则图中全等三角形的总对数是A3B4C5D64、如图,在中,平分,则的度数是()ABCD5、如图,中,是延长线上一点,且,则的度数是()ABCD二、多选题(5小题,每小题4分,共计20分)1、一幅美丽的图案,在其顶点处由四个正多边形镶嵌而成,其中三个分别为正三角形、正四边形、正六边形,则另一个不能为()A正六边形B正五边形C正四边形D正三角形2、一个多边形被截去一个角后,变为五边形,原来的多边形是几边形()A3B4C5D63、若一个三角

    3、形的两边长分别为5和7,则该三角形的周长可能是() 线 封 密 内 号学级年名姓 线 封 密 外 A12B16C19D254、如图,为了估计池塘两岸,间的距离,在池塘的一侧选取点,测得米,米,那么,间的距离可能是()A5米B8.7米C27米D18米5、如图,O是正六边形ABCDE的中心,下列图形不可能由OBC平移得到的是()AOCDBOABCOAFDOEF第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图所示,AD是ABC中BC边上的中线,若AB=2,AC=6,则AD的取值范围是_2、在ABC中,将B、C按如图方式折叠,点B、C均落于边BC上一点G处,线段MN、EF为

    4、折痕若A80,则MGE_3、用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形图中,_度4、如图,在矩形ABCD中,AB8cm,AD12cm,点P从点B出发,以2cm/s的速度沿BC边向点C运动,到达点C停止,同时,点Q从点C出发,以vcm/s的速度沿CD边向点D运动,到达点D停止,规定其中一个动点停止运动时,另一个动点也随之停止运动当v为_时,ABP与PCQ全等5、(1)如图1所示,_;(2)如果把图1称为二环三角形,它的内角和为;图2称为二环四边形,它的内角和为,则二环四边形的内角和为_;二环五边形的内角和为_;二环n边形的内角和为_ 线

    5、封 密 内 号学级年名姓 线 封 密 外 四、解答题(5小题,每小题8分,共计40分)1、用反证法证明:一个三角形中不能有两个角是直角2、如图,在中,ABAC,D是BA延长线上一点,E是AC的中点,连接DE并延长,交BC于点M,DAC的平分线交DM于点F求证:AFCM3、如图,AD,CE是ABC的两条高.已知AD=5,CE=4.5,AB=6.(1)求ABC的面积;(2)求BC的长4、如图,在中,是边上的一点,平分,交边于点,连接(1)求证:;(2)若,求的度数5、如图,在ABC中,BAC90,ABAC,直线m经过点A,BD直线m,CE直线m,垂足分别为D,E(1)求证:ABDACE;(2)若B

    6、D2cm,CE4cm,求DE的长-参考答案-一、单选题1、C【解析】【分析】根据,可得再根据三角形内角和即可得出答案【详解】由图可得 线 封 密 内 号学级年名姓 线 封 密 外 ,故选:C【考点】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键2、B【解析】【分析】解方程得出x4或x6,分两种情况:当ABAD4时,4+48,不能构成三角形;当ABAD6时,6+68,即可得出菱形ABCD的周长【详解】解:如图所示:四边形ABCD是菱形,ABBCCDAD,x210x+240,因式分解得:(x4)(x6)0,解得:x4或x6,分两种情况:当ABAD4时,4+48

    7、,不能构成三角形;当ABAD6时,6+68,菱形ABCD的周长4AB24故选:B【考点】本题考查菱形的性质、解一元二次方程-因式分解法、三角形的三边关系,熟练掌握并灵活运用是解题的关键3、D【解析】【分析】根据全等三角形的判定方法进行判断全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件【详解】解:ABDC,ADBC,DAC=BCA,CDB=ABD,DCA=BAC,ADB=CBD,又BE=DF,由ADB=CBD,DB=BD,ABD=CDB,可得ABDCDB;由DAC=BCA,AC=CA,DCA=BAC,可得ACDCAB;AO=CO,DO=BO,由DAO=BCO,AO=CO,AO

    8、D=COB,可得AODCOB;由CDB=ABD,COD=AOB,CO=AO,可得CODAOB;由DCA=BAC,COF=AOE,CO=AO,可得AOECOF;由CDB=ABD,DOF=BOE,DO=BO,可得DOFBOE;故选D【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题主要考查了全等三角形的判定与性质的运用,解题时注意:若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,或者是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边4、C【解析】【分析】在中,利用三角形内角和为求,再利用平分,求出的度数,再在利用三角形内角和

    9、定理即可求出的度数【详解】在中,平分故选C【考点】本题考查了三角形的内角和和角平分线的性质,熟练应用性质是解决问题的关键5、C【解析】【分析】根据三角形的外角性质求解 【详解】解:由三角形的外角性质可得:ACD=B+A,A=ACD-B=130-55=75,故选C【考点】本题考查三角形的外角性质,熟练掌握三角形的外角性质定理并能灵活运用是解题关键二、多选题1、ABD【解析】【分析】平面镶嵌要求多边形在同一个顶点处的所有角的和为 根据平面镶嵌的要求逐一求解各选项涉及的多边形在一个顶点处的所有的角之和,从而可得答案.【详解】解: 一幅美丽的图案,在其顶点处由四个正多边形镶嵌而成,其中三个分别为正三角

    10、形、正四边形、正六边形, 在顶点处的四个角的和为: 而正三角形、正四边形、正六边形的每一个内角依次为: 当第四个多边形为正六边形时, 故符合题意;当第四个多边形为正五边形时, 故符合题意;当第四个多边形为正四边形时, 故不符合题意;当第四个多边形为正三角形时, 故符合题意;故选: 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查的是平面镶嵌,熟悉平面镶嵌时,围绕在一个顶点处的所有的角组成一个周角是解题的关键.2、BCD【解析】【分析】利用直线截去多边形的一个角,注意分类讨论,直线不过多边形的顶点,过一个顶点,过两个顶点,从而可得答案.【详解】解:一个三角形被截去一个角后,得不到五

    11、边形,故不符合题意;如图,一个四边形被截去一个角后,可得到五边形,故符合题意;如图,一个五边形被截去一个角后,可得到五边形,故符合题意;如图,一个六边形被截去一个角后,可得到五边形,故符合题意;故选:【考点】本题考查的是认识多边形,利用直线截去多边形的一个角所形成的新的多边形,理解截的方法是解题的关键.3、BC【解析】【分析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项【详解】解:三角形的两边长分别为5和7,7-5=2第三条边7+5=12,5+7+2三角形的周长5+7+12,即14三角形的周长24,故选BC【考点】本题考查了三角形三条边的关

    12、系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可4、ABD 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】连接AB,根据三角形的三边关系定理得出不等式,即可得出选项【详解】解:连接AB,PA=15米,PB=11米,由三角形三边关系定理得:1511AB15+11,4AB26,那么,间的距离可能是5米、8.7米、18米;故选:ABD【考点】本题考查了三角形的三边关系定理,能根据三角形的三边关系定理得出不等式是解此题的关键5、ABD【解析】【分析】利用平移的定义和性质求解,平移不改变图形的形状和大小。图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等。

    13、.【详解】解: O是正六边形ABCDE的中心,都是等边三角形,都不能由平移得到,可以由平移得到,故符合题意,不符合题意;故选:【考点】本题考查的是正多边形的性质,平移的定义,平移的性质,熟悉平移的含义与性质是解题的关键.三、填空题1、2AD4【解析】【分析】此题要倍长中线,再连接,构造全等三角形根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边即可求解【详解】解:延长AD到E,使AD=DE,连接BE,AD是ABC的中线,BD=CD,在ADC与EDB中, 线 封 密 内 号学级年名姓 线 封 密 外 ADCEDB(SAS),EB=AC,根据三角形的三边关系定理:6-2AE6+2

    14、,2AD4,故AD的取值范围为2AD4【考点】本题主要考查对全等三角形的性质和判定,三角形的三边关系定理等知识点的理解和掌握,能推出6-2AE6+2是解此题的关键2、80【解析】【分析】由折叠的性质可知:BMGB,CEGC,根据三角形的内角和为180,可求出BC的度数,进而得到MGBEGC的度数,问题得解【详解】解:线段MN、EF为折痕,BMGB,CEGC,A80,BC18080100,MGBEGCBC100,MGE18010080,故答案为:80【考点】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,解题的关键是利用整体思想

    15、得到MGBEGC的度数3、36【解析】【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题【详解】解:,是等腰三角形,度,故答案为:36【考点】本题主要考查了多边形的内角和定理和等腰三角形的性质 解题关键在于知道n边形的内角和为:180(n2)4、2或【解析】【详解】可分两种情况:ABPPCQ得到BPCQ,ABPC,ABPQCP得到BACQ,PBPC,然后分别计算出t的值,进而得到v的值【解答】解:当BPCQ,ABPC时,ABPPCQ,AB8cm,PC8cm,BP1284(cm), 线 封 密 内 号学级年名姓 线 封 密 外 2t4,解得:t2,CQBP4cm,v24,解得:v2;当

    16、BACQ,PBPC时,ABPQCP,PBPC,BPPC6cm,2t6,解得:t3,CQAB8cm,v38,解得:v,综上所述,当v2或时,ABP与PQC全等,故答案为:2或【考点】此题考查了动点问题,全等三角形的性质的应用,解一元一次方程,正确理解全等三角形的性质得到相等的对应边求出t是解题的关键5、 360 720 1080 【解析】【分析】(1)结合题意,根据对顶角和三角形内角和的知识,得,再根据四边形内角和的性质计算,即可得到答案;(2)连接,交于点M,根据三角形内角和和对顶角的知识,得;结合五边形内角和性质,得;结合(1)的结论,根据数字规律的性质分析,即可得到答案【详解】(1)如图所

    17、示,连接AD,交于点M,;故答案为:360(2)如图,连接,交于点M 线 封 密 内 号学级年名姓 线 封 密 外 , 二环四边形的内角和为:二环三角形的内角和为:二环四边形的内角和为:二环五边形的内角和为:二环n边形的内角和为:故答案为:,【考点】本题考查了多边形内角和、对顶角、数字规律的知识;解题的关键是熟练掌握三角形内角和、多边形内角和、数字规律的性质,从而完成求解四、解答题1、见解析【解析】【分析】假设三角形的三个内角中有两个(或三个)直角,不妨设,则,这与三角形内角和为相矛盾,不成立,由此即可证明【详解】证明:假设三角形的三个内角中有两个(或三个)直角,不妨设,则,这与三角形内角和为

    18、相矛盾,不成立,所以一个三角形中不能有两个直角【考点】本题主要考查了反证法,解题的关键在于能够熟练掌握反证法的步骤2、证明见解析【解析】【分析】先根据等腰三角形的性质可得,再根据三角形的外角性质可得,然后根据角平分线的定义得,最后根据三角形全等的判定定理与性质即可得证【详解】,AF是的平分线,E是AC的中点, 线 封 密 内 号学级年名姓 线 封 密 外 在和中,【考点】本题考查了等腰三角形的性质、角平分线的定义、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键3、(1)13.5;(2)5.4;【解析】【分析】(1)根据三角形的面积等于底乘以高除以2列式计算即可得解;

    19、(2)根据ABC的面积列式计算即可得解【详解】(1)CE=4.5,AB=6,ABC的面积=4.56=13.5;(2)ABC的面积=BCAD=13.5,即BC5=13.5,解得BC=5.4.【考点】此题考查三角形的面积,三角形的角平分线、中线和高,解题关键在于掌握计算公式.4、 (1)见解析;(2)【解析】【分析】(1)由角平分线定义得出,由证明即可;(2)由三角形内角和定理得出,由角平分线定义得出,在中,由三角形内角和定理即可得出答案【详解】(1)证明:平分,在和中,;(2),平分,在中,【考点】本题考查了全等三角形的判定与性质、角平分线的定义、三角形内角和定理;熟练掌握三角形内角和定理和角平

    20、分线定义,证明三角形全等是解题的关键5、(1)见解析;(2)DE6cm【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 (1)根据BD直线m,CE直线m,得BDA=CEA=90,而BAC=90,根据等角的余角相等得CAE=ABD,然后根据“AAS”可判断ADBCEA;(2)根据全等三角形的性质得出AE=BD,AD=CE,于是DE=AE+AD=BD+CE【详解】解:(1)BD直线m,CE直线m,BDACEA90,BAC90,BAD+CAE90,BAD+ABD90,CAEABD,在ABD和CAE中,ABDCAE(AAS),(2)ABDCAE,AEBD,ADCE,DEAE+ADBD+CE,BD2cm,CE4cm,DE6cm;【考点】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;得出CAE=ABD是解题关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年基础强化人教版数学八年级上册期中定向训练试题 B卷(详解版).docx
    链接地址:https://www.ketangku.com/wenku/file-638039.html
    相关资源 更多
  • 专题09 应用文写作(9)-研读近十年高考英语满分书面表达聚焦2023高考.docx专题09 应用文写作(9)-研读近十年高考英语满分书面表达聚焦2023高考.docx
  • 专题09 应用文写作12篇(第二期)-2023高考英语名校模拟真题速递(新高考专用).docx专题09 应用文写作12篇(第二期)-2023高考英语名校模拟真题速递(新高考专用).docx
  • 专题09 应用文写作-2022-2023学年高二英语上学期期末专项复习(译林版2020).docx专题09 应用文写作-2022-2023学年高二英语上学期期末专项复习(译林版2020).docx
  • 专题09 平面直角坐标系(解析版).docx专题09 平面直角坐标系(解析版).docx
  • 专题09 平面直角坐标系(原卷版).docx专题09 平面直角坐标系(原卷版).docx
  • 专题09 平面直角坐标系与函数(11个高频考点)(举一反三)(全国版)(解析版).docx专题09 平面直角坐标系与函数(11个高频考点)(举一反三)(全国版)(解析版).docx
  • 专题09 平面直角坐标系与函数(11个高频考点)(举一反三)(全国版)(原卷版).docx专题09 平面直角坐标系与函数(11个高频考点)(举一反三)(全国版)(原卷版).docx
  • 专题09 平面直角坐标系与函数基础(解析版).docx专题09 平面直角坐标系与函数基础(解析版).docx
  • 专题09 平面直角坐标系与函数基础(考点回归).docx专题09 平面直角坐标系与函数基础(考点回归).docx
  • 专题09 平面直角坐标系与函数基础(原卷版).docx专题09 平面直角坐标系与函数基础(原卷版).docx
  • 专题09 平面直角坐标系与函数基础知识(共30道)(教师版)(02期)-2023年中考数学真题分类训练.docx专题09 平面直角坐标系与函数基础知识(共30道)(教师版)(02期)-2023年中考数学真题分类训练.docx
  • 专题09 平面直角坐标系与函数基础知识(共30道)(学生版)(02期)-2023年中考数学真题分类训练.docx专题09 平面直角坐标系与函数基础知识(共30道)(学生版)(02期)-2023年中考数学真题分类训练.docx
  • 专题09 平面向量及复数、推理证明-【口袋书】2022年高考数学复习思维导图(新高考地区专用).docx专题09 平面向量及复数、推理证明-【口袋书】2022年高考数学复习思维导图(新高考地区专用).docx
  • 专题09 平面向量、不等式及复数(解析版).docx专题09 平面向量、不等式及复数(解析版).docx
  • 专题09 平面向量、不等式及复数(原卷版).docx专题09 平面向量、不等式及复数(原卷版).docx
  • 专题09 平面向量 9.3三角形四心及面积问题 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题09 平面向量 9.3三角形四心及面积问题 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题09 平面向量 9.2数量积 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题09 平面向量 9.2数量积 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题09 平面向量 9.2数量积 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题09 平面向量 9.2数量积 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题09 平面向量 9.1线性运算、基本定理和坐标运算 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题09 平面向量 9.1线性运算、基本定理和坐标运算 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题09 幂运算(三大类型)-2022-2023学年七年级数学下册《高分突破•培优新方法》(苏科版).docx专题09 幂运算(三大类型)-2022-2023学年七年级数学下册《高分突破•培优新方法》(苏科版).docx
  • 专题09 导数的概念意义及运算(考点清单)(解析版).docx专题09 导数的概念意义及运算(考点清单)(解析版).docx
  • 专题09 导数的概念意义及运算(考点清单)(原卷版).docx专题09 导数的概念意义及运算(考点清单)(原卷版).docx
  • 专题09 导数大题训练理科(教师版).docx专题09 导数大题训练理科(教师版).docx
  • 专题09 导数压轴题之拉格朗日中值定理详述版(解析版).docx专题09 导数压轴题之拉格朗日中值定理详述版(解析版).docx
  • 专题09 导数压轴题之拉格朗日中值定理详述版(原卷版).docx专题09 导数压轴题之拉格朗日中值定理详述版(原卷版).docx
  • 专题09 家庭生活-备战2022高考英语阅读七选五热点话题 体裁分类训练(高考模拟 名校真题).docx专题09 家庭生活-备战2022高考英语阅读七选五热点话题 体裁分类训练(高考模拟 名校真题).docx
  • 专题09 实验设计重方法-备战2022年中考化学必背手册(南京专用).docx专题09 实验设计重方法-备战2022年中考化学必背手册(南京专用).docx
  • 专题09 完成图表(名校模拟 地区真题)-冲刺2023年中考英语必考题型终极预测(成都专用).docx专题09 完成图表(名校模拟 地区真题)-冲刺2023年中考英语必考题型终极预测(成都专用).docx
  • 专题09 完成句子80题-2023年中考英语逆袭冲刺名校模拟真题特快专递(广州专用).docx专题09 完成句子80题-2023年中考英语逆袭冲刺名校模拟真题特快专递(广州专用).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1