2022-2023学年度人教版九年级数学上册期末综合复习试题 卷(Ⅲ)(含答案详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022-2023学年度人教版九年级数学上册期末综合复习试题 卷含答案详解 2022 2023 学年 度人 九年级 数学 上册 期末 综合 复习 试题 答案 详解
- 资源描述:
-
1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末综合复习试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、记某商品销售单价为x元,商家销售此种商品每月获得的销售利润为y元,
2、且y是关于x的二次函数已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y与x的函数关系式是()Ay(x60)2+1825By2(x60)2+1850Cy(x65)2+1900Dy2(x65)2+20002、在同一坐标系中,二次函数与一次函数的图像可能是()ABCD3、函数yax与yax2+a(a0)在同一直角坐标系中的大致图象可能是()ABCD4、在平面直角坐标系中,将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为()ABCD5、如图,是上直
3、径两侧的两点设,则()ABCD 线 封 密 内 号学级年名姓 线 封 密 外 二、多选题(5小题,每小题4分,共计20分)1、在中,且关于x的方程有两个相等的实数根,以下结论正确的是()AAC边上的中线长为1BAC边上的高为CBC边上的中线长为D外接圆的半径是22、如图所示,二次函数的图象的一部分,图像与x轴交于点下列结论中正确的是()A抛物线与x轴的另一个交点坐标是BC若抛物线经过点,则关于x的一元二次方程的两根分别为,5D将抛物线向左平移3个单位,则新抛物线的表达式为3、二次函数的部分图象如图所示,图象过点(3,0),对称轴为下列结论正确的是()ABCD若(5,),(2,)是抛物线上两点,
4、则4、如图,是的直径,是上的点,且,分别与,相交于点,则下列结论一定成立的是()ABC平分DE5、关于二次函数y=ax2+bx+c的图象有下列命题,其中正确的命题是()A当c=0时,函数的图象经过原点;B当c0,且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根;C函数图象最高点的纵坐标是;D当b=0时,函数的图象关于y轴对称第卷(非选择题 65分) 线 封 密 内 号学级年名姓 线 封 密 外 三、填空题(5小题,每小题5分,共计25分)1、写出一个满足“当时,随增大而减小”的二次函数解析式_2、 “降次”是解一元二次方程的基本思想,用这种思想解高次方程x3x0,它的解是_
5、3、如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m,设道路的宽为x m,则根据题意,可列方程为_.4、在平面直角坐标系中,二次函数过点(4,3),若当0xa 时,y 有最大值 7, 最小值 3,则 a 的取值范围是_5、抛物线是二次函数,则m=_四、解答题(5小题,每小题8分,共计40分)1、某宾馆共有80间客房宾馆负责人根据经验作出预测:今年5月份,每天的房间空闲数y(间)与定价x(元/间)之间满足yx42(x168)若宾馆每天的日常运营成本为4000元,有客人入住的房间,宾馆每天每间另外还需支
6、出36元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠(1)求入住房间z(间)与定价x(元/间)之间关系式;(2)应将房间定价确定为多少元时,获得利润最大?求出最大利润?2、如图1,抛物线y=ax2+bx+3交x轴于点A(1,0)和点B(3,0)(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上求四边形ACFD的面积;点P是线段AB上的动点(点P不与点A、B重合),过点P作PQx轴交该抛物线于点Q,连接AQ、DQ,当AQD是直角三角形时,求出所有满足条件的点Q的坐标3、已知,是一元二次方程的两个实数根(1)求k的取值范围;(
7、2)是否存在实数k,使得等式成立?如果存在,请求出k的值,如果不存在,请说明理由4、如图是两条互相垂直的街道, 且A到B, C的距离都是4千米. 现甲从B地走向A地, 乙从A地走向C地, 若两人同时出发且速度都是4千米/时, 问何时两人之间的距离最近?5、已知关于x的一元二次方程有两个实数根(1)求k的取值范围;(2)若,求k的值-参考答案- 线 封 密 内 号学级年名姓 线 封 密 外 一、单选题1、D【解析】【分析】设二次函数的解析式为:yax2bxc,根据题意列方程组即可得到结论【详解】解:设二次函数的解析式为:yax2+bx+c,当x55,y1800,当x75,y1800,当x80时,
8、y1550, ,解得a2,b260,c6450,y与x的函数关系式是y2x2+260x64502(x65)2+2000,故选:D【考点】本题考查了根据实际问题列二次函数关系式,正确的列方程组是解题的关键2、C【解析】【分析】直线与抛物线联立解方程组,若有解,则图象有交点,若无解,则图象无交点;根据二次函数的对称轴在y左侧,a,b同号,对称轴在y轴右侧a,b异号,以及当a大于0时开口向上,当a小于0时开口向下,来分析二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,交y轴于正半轴,常数项为
9、负,交y轴于负半轴如此分析下来,二次函数与一次函数无矛盾者为正确答案【详解】解:由方程组得ax2a,a0x21,该方程无实数根,故二次函数与一次函数图象无交点,排除BA:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;但是一次函数b为一次项系数,图象显示从左向右上升,b0,两者矛盾,故A错;C:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;b为一次函数的一次项系数,图象显示从左向右下降,b0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错故选C【考点】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数的开口方向与a的正负的关系,a,b的符号
10、与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上3、D【解析】【分析】先根据一次函数的性质确定a0与a0两种情况分类讨论抛物线的顶点位置即可得出结论【详解】解:函数yax与yax2+a(a0) 线 封 密 内 号学级年名姓 线 封 密 外 A. 函数yax图形可得a0,则yax2+a(a0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是交y轴正半轴,故选项A不正确;B. 函数yax图形可得a0,则yax2+a(a0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是在坐标原点上,故选项B不正确;C. 函数yax图形可得a0,则yax2+
11、a(a0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴,故选项C不正确;D. 函数yax图形可得a0,则yax2+a(a0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴正确,故选项D正确;故选D【考点】本题考查的知识点是一次函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键4、B【解析】【分析】先求出平移后抛物线的顶点坐标,进而即可得到答案【详解】解:的顶点坐标为(0,0)将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线的顶点坐标为(-2,1),所得抛物线对应的函数表达式为,故选B【考点】本题主要考查二次函数的平移规律,找出平移
12、后二次函数图像的顶点坐标或掌握“左加右减,上加下减”,是解题的关键5、D【解析】【分析】先利用直径所对的圆周角是直角得到ACB=90,从而求出BAC,再利用同弧所对的圆周角相等即可求出BDC【详解】解:C ,D是O上直径AB两侧的两点,ACB=90,ABC=25,BAC=90-25=65,BDC=BAC=65,故选:D【考点】本题考查了圆周角定理的推论,即直径所对的圆周角是90和同弧或等弧所对的圆周角相等,解决本题的关键是牢记相关概念与推论,本题蕴含了属性结合的思想方法二、多选题1、BCD【解析】【分析】由根的判别式求出AC=b=4,由勾股定理的逆定理证出ABC是直角三角形,再由直角三角形斜边
13、上的中线性质即可得出AC的长,利用等积法求出斜边上的高,根据勾股定理求出BC边上的中线,利用直角三角形外接圆的半径是斜边的一半得出外接圆的半径【详解】 线 封 密 内 号学级年名姓 线 封 密 外 一元二次方程x2-4x+b=0有两个相等的实数根,(-4)2-4b=0,b=4AC=4,AB2+BC2=AC2,ABC为直角三角形,直角三角形斜边上的中线等于斜边的一半的性质,AC边上的中线长=2,故A错误;ABBC=ACh22=4hh=故B正确;BC边上的中线=故C正确直角三角形外接圆的半径等于斜边的一半,所以为2故D正确故答案为:BCD【考点】本题考查了一元二次方程ax2+bx+c=0(a0)的
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-640942.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2022年高中英语 Module 2 My New Teachers —3 Integrating Skills课件 外研版必修1.ppt
