2022-2023学年度人教版九年级数学上册期末综合测评试题 (B)卷(解析版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022-2023学年度人教版九年级数学上册期末综合测评试题 B卷解析版 2022 2023 学年 度人 九年级 数学 上册 期末 综合 测评 试题 解析
- 资源描述:
-
1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末综合测评试题 (B)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,已知是的两条切线,A,B为切点,线段交于点M给出下列四种说
2、法:;四边形有外接圆;M是外接圆的圆心,其中正确说法的个数是()A1B2C3D42、已知ABC为等腰三角形,若BC6,且AB,AC为方程x28x+m0两根,则m的值等于()A12B16C12或16D12或163、将抛物线C1:y(x3)22向左平移3个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()Ayx22Byx22Cyx22Dyx224、如图,一次函数y=-3x+4的图象交x轴于点A,交y轴于点B,点P在线段AB上(不与点A,B重合),过点P分别作OA和OB的垂线,垂足为C,D若矩形OCPD的面积为1时,则点P的坐标为()A(,3)B(,2)C(,2
3、)和(1,1)D(,3)和(1,1)5、如图,一个油桶靠在直立的墙边,量得并且则这个油桶的底面半径是()ABCD二、多选题(5小题,每小题4分,共计20分)1、如图,AB为O直径,弦CDAB于E,则下面结论中正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 ACE=DEB弧BC=弧BDCBAC=BADDOE=BE2、在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象不可能是()ABCD3、下列方程不适合用因式方程解法解的是()Ax23x+2=0B2x2=x+4C(x1)(x+2)=70Dx211x10=04、已知,的半径为5,某条经过点的弦的长度为整数,则该弦的长度可能
4、为()A4B6C8D105、对于二次函数,下列说法不正确的是()A图像开口向下B图像的对称轴是直线C函数最大值为0D随的增大而增大第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、若代数式有意义,则x的取值范围是 _2、如图,四边形内接于,若,则_ 3、一个直角三角形的两条直角边相差5cm,面积是7cm2,则其斜边的长是 _4、如果二次函数的图像在它的对称轴右侧部分是上升的,那么的取值范围是_.5、若函数图像与x轴的两个交点坐标为和,则_四、解答题(5小题,每小题8分,共计40分)1、顶点为D的抛物线yx2+bx+c交x轴于A、B(3,0),交y轴于点C,直线yx+m经过
5、点C,交x轴于E(4,0)(1)求出抛物线的解析式;(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值; 线 封 密 内 号学级年名姓 线 封 密 外 (3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线yx+m于G,交抛物线于H,连接CH,将CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标2、二次函数与轴分别交于点和点,与轴交于点,直线的解析式为,轴交直线于点(1)求二次函数的解析式;(2)为线段上一动点,过点且垂直于轴的直线与抛物线及直线
6、分别交于点、直线与直线交于点,当时,求值3、已知关于x的一元二次方程(1)求证:不论m取何值,方程总有两个不相等的实数根;(2)若方程有两个实数根为,且,求m的值4、已知抛物线过点(1)求抛物线的解析式;(2)点A在直线上且在第一象限内,过A作轴于B,以为斜边在其左侧作等腰直角若A与Q重合,求C到抛物线对称轴的距离;若C落在抛物线上,求C的坐标5、如图,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点,连接(1)求抛物线的解析式;(2)点在抛物线的对称轴上,当的周长最小时,点的坐标为_;(3)点是第四象限内抛物线上的动点,连接和求面积的最大值及此时点的坐标;(4)若点是对称轴上的动点,
7、在抛物线上是否存在点,使以点、为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由 线 封 密 内 号学级年名姓 线 封 密 外 -参考答案-一、单选题1、C【解析】【分析】由切线长定理判断,结合等腰三角形的性质判断,利用切线的性质与直角三角形的斜边上的中线等于斜边的一半,判断,利用反证法判断【详解】如图, 是的两条切线, 故正确, 故正确, 是的两条切线, 取的中点,连接,则 所以:以为圆心,为半径作圆,则共圆,故正确, M是外接圆的圆心, 与题干提供的条件不符,故错误,综上:正确的说法是个,故选C【考点】本题考查的是切线长定理,三角形的外接圆,四边形的外接圆,掌握以
8、上知识是解题的关键2、D【解析】【分析】由ABC为等腰三角形,BC6,且AB,AC为方程x28x+m0两根,可得两种情况:BC6AB,把6代入方程得3648+m0ABAC,此时方程的判别式为0,分别求解即可【详解】解:ABC为等腰三角形,若BC6,且AB,AC为方程x28x+m0两根, 线 封 密 内 号学级年名姓 线 封 密 外 则BC6AB,把6代入方程得3648+m0,m12;ABAC,此时方程的判别式为0,644m0,m16故m的值等于12或16故选:D【考点】本题考查了一元二次方程的判别式和等腰三角形的性质,熟练掌握知识点是解题的关键3、D【解析】【分析】根据抛物线C1的解析式得到顶
9、点坐标,利用二次函数平移的规律:左加右减,上加下减,并根据平移前后二次项的系数不变可得抛物线C2的顶点坐标,再根据关于x轴对称的两条抛物线的顶点横坐标相等,纵坐标互为相反数,二次项系数互为相反数可得到抛物线C3所对应的解析式【详解】解:抛物线 C 1:y(x3)22,其顶点坐标为(3,2)向左平移3个单位长度,得到抛物线C2抛物线C2的顶点坐标为(0,2)抛物线C2与抛物线C3关于 x轴对称抛物线C3的横坐标不变,纵坐标互为相反数,二次项系数互为相反数抛物线C3的顶点坐标为(0,2),二次项系数为1抛物线C3的解析式为yx22故选:D【考点】本题主要考查了二次函数图象的平移、对称问题,熟练掌握
10、平移的规律以及关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数是解题的关键4、D【解析】【分析】由点P在线段AB上可设点P的坐标为(m,-3m+4)(0m),进而可得出OC=m,OD=-3m+4,结合矩形OCPD的面积为1,即可得出关于m的一元二次方程,解之即可得出m的值,再将其代入点P的坐标中即可求出结论【详解】解:点P在线段AB上(不与点A,B重合),且直线AB的解析式为y=-3x+4,设点P的坐标为(m,-3m+4)(0m),OC=m,OD=-3m+4矩形OCPD的面积为1,m(-3m+4)=1,m1=,m2=1,点P的坐标为(,3)或(1,1)故选:D
11、【考点】本题考查了一次函数图象上点的坐标特征以及解一元二次方程,利用一次函数图象上点的坐标特征及,找出关于m的一元二次方程是解题的关键 线 封 密 内 号学级年名姓 线 封 密 外 5、C【解析】【分析】根据切线的性质,连接过切点的半径,构造正方形求解即可【详解】如图所示:设油桶所在的圆心为O,连接OA,OC,AB、BC与O相切于点A、C,OAAB,OCBC,又ABBC,OA=OC,四边形OABC是正方形,OA=AB=BC=OC=0.8m,故选:C【考点】考查了切线的性质和正方形的判定、性质,解题关键是理解和掌握切线的性质二、多选题1、ABC【解析】【分析】根据垂径定理知,垂直于弦的直径平分弦
12、,并且平分线所对的两条弧,即可判断A选项、B选项正确,由圆周角定理知,在同圆或等圆中,同弧所对的圆周角相等,可判断C选项正确,题目中并没有提到E是OB中点,所以不能证明OE=BE【详解】A. AB为O直径,弦CDAB于E,由垂径定理得:CE=DE,A选项正确;B.由垂径定理得:,B选项正确;C. ,由圆周角定理得:BAC=BAD,C选项正确;D. E不一定是OB中点,所以不能证明OE=BE,D错误故选:ABC【考点】本题考查垂径定理和圆周角定理,熟知垂直于弦的直径平分弦,并且平分线所对的两条弧是解题的关键2、ABD【解析】【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函
13、数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题【详解】A、对于直线y=bx+a来说,由图象可以判断,a0,b0;而对于抛物线来说,对称轴x= 线 封 密 内 号学级年名姓 线 封 密 外 0,应在y轴的左侧,图形错误,故符合题意B、对于直线y=bx+a来说,由图象可以判断,a0,b0;而对于抛物线来说,图象应开口向下,故不合题意,图形错误,故符合题意C、对于直线y=bx+a来说,由图象可以判断,a0,b0;而对于抛物线来说,图象开口向下,对称轴x=位于 y轴的右侧,图形正确,故不符合题意,D、对于直线y=bx+a来说,由图象可以判断,a0,b0;而对于抛
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-640944.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
(安徽专版)2022春七年级语文下册 第5单元易错专训习题课件 新人教版.ppt
