分享
分享赚钱 收藏 举报 版权申诉 / 29

类型2022-2023学年度人教版九年级数学上册第二十四章圆综合训练练习题(含答案解析).docx

  • 上传人:a****
  • 文档编号:641576
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:29
  • 大小:553.86KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 度人 九年级 数学 上册 第二 十四 综合 训练 练习题 答案 解析
    资源描述:

    1、人教版九年级数学上册第二十四章圆综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,cosB,sinC,AC5,则ABC的面积是( )A B12C14D212、已知:如图,AB是O的

    2、直径,点P在BA的延长线上,弦CD交AB于E,连接OD、PC、BC,AOD2ABC,PD,过E作弦GFBC交圆与G、F两点,连接CF、BG则下列结论:CDAB;PC是O的切线;ODGF;弦CF的弦心距等于BG则其中正确的是()ABCD3、如图,在ABC中,ACB90,ACBC,AB4cm,CD是中线,点E、F同时从点D出发,以相同的速度分别沿DC、DB方向移动,当点E到达点C时,运动停止,直线AE分别与CF、BC相交于G、H,则在点E、F移动过程中,点G移动路线的长度为()A2BC2D4、如图,O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与O的位置关系

    3、是()A在O内B在O上C在O外D以上都有可能5、如图,是的内接三角形,是直径,则的长为( )A4BCD6、在平面直角坐标系xOy中,已知点A(4,3),以原点O为圆心,5为半径作O,则()A点A在O上B点A在O内C点A在O外D点A与O的位置关系无法确定7、如图,在四边形ABCD中,则AB()A4B5CD8、如图,AB为的直径,C,D为上的两点,若,则的度数为()ABCD9、如图,点A、B、C在O上,且ACB=100o,则度数为()A160oB120oC100oD80o10、以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内O上的一点,若DAB25,则OCD()A50B4

    4、0C70D30第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC内接于O,CAB=30,CBA=45,CDAB于点D,若O的半径为2,则CD的长为_2、如图,已知是的直径,是的切线,连接交于点,连接若,则的度数是_3、在O中,若弦垂直平分半径,则弦所对的圆周角等于_4、如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中的长是_cm(计算结果保留)5、如图,在中,半径,是半径上一点,且,是上的两个动点,是的中点,则的长的最大值等于_三、解答题(5小题,每小题10分,共计50分)1、已知的半径是弦求圆心到

    5、的距离;弦两端在圆上滑动,且保持,的中点在运动过程中构成什么图形,请说明理由2、如图,AB、CD是O中两条互相垂直的弦,垂足为点E,且AECE,点F是BC的中点,延长FE交AD于点G,已知AE1,BE3,OE(1)求证:AEDCEB;(2)求证:FGAD;(3)若一条直线l到圆心O的距离d,试判断直线l是否是圆O的切线,并说明理由3、已知P为O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有点A、B(不与P、Q重合),连接AP、BP,若APQ=BPQ(1)如图1,当APQ=45,AP=1,BP=2时,求O的半径。(2)如图2,连接AB,交PQ于点M,点N在线段PM上(不与P、M重

    6、合),连接ON、OP,设NOP=,OPN=,若AB平行于ON,探究与的数量关系。4、【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形,请你用圆规和无刻度的直尺过圆心作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段,请你用圆规和无刻度的直尺作一个以为斜边的等腰直角三角形;【问题再解】如图3,已知扇形,请你用圆规和无刻度的直尺作一条以点为圆心的圆弧,使扇形的面积被这条圆弧平分(友情提醒:以上作图均不写作法,但需保留作图痕迹)5、如图,PA、PB分别切O于A、B,连接PO与O相交于C,连接AC、BC,求证:AC=BC -参考答案

    7、-一、单选题1、A【解析】【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积【详解】解:过点A作ADBC,ABC中,cosB=,sinC=,AC=5,cosB=,B=45,sinC=,AD=3,CD=4,BD=3,则ABC的面积是:ADBC=3(3+4)=故选A【考点】此题主要考查了解直角三角形的知识,作出ADBC,进而得出相关线段的长度是解决问题的关键2、A【解析】【分析】连接BD、OC、AG、AC,过O作OQCF于Q,OZBG于Z,求出ABC=ABD,从而有弧AC=弧AD,由垂径定理的推论即可判断的正误;由CDPB可得到P+PCD=90,结合P=DC

    8、O、等边对等角的知识等量代换可得到PCO=90,据此可判断的正误;假设ODGF成立,则可得到ABC=30,判断由已知条件能否得到ABC的度数即可判断的正误;求出CF=AG,根据垂径定理和三角形中位线的知识可得到CQ=OZ,通过证明OCQBOZ可得到OQ=BZ,结合垂径定理即可判断.【详解】连接BD、OC、AG,过O作OQCF于Q,OZBG于Z,OD=OB,ABD=ODB,AOD=OBD+ODB=2OBD,AOD=2ABC,ABC=ABD,弧AC=弧AD,AB是直径,CDAB,正确;CDAB,P+PCD=90,OD=OC,OCD=ODC=P,PCD+OCD=90,PCO=90,PC是切线,正确;

    9、假设ODGF,则AOD=FEB=2ABC,3ABC=90,ABC=30,已知没有给出B=30,错误;AB是直径,ACB=90,EFBC,ACEF,弧CF=弧AG,AG=CF,OQCF,OZBG,CQ=AG,OZ=AG,BZ=BG,OZ=CQ,OC=OB,OQC=OZB=90,OCQBOZ,OQ=BZ=BG,正确故选A【考点】本题是圆的综合题,考查了垂径定理及其推论,切线的判定,等腰三角形的性质,平行线的性质,全等三角形的判定与性质.解答本题的关键是熟练掌握圆的有关知识点.3、D【解析】【分析】【详解】解:如图,CACB,ACB90,ADDB,CDAB,ADECDF90,CDADDB,在ADE和

    10、CDF中,ADECDF(SAS),DAEDCF,AEDCEG,ADECGE90,A、C、G、D四点共圆,点G的运动轨迹为弧CD,AB4,ABAC,AC2,OAOC,DADC,OAOC,DOAC,DOC90,点G的运动轨迹的长为故选:D4、A【解析】【详解】如图,连接OA,则在直角OMA中,根据勾股定理得到OA=点A与O的位置关系是:点A在O内 故选A 5、B【解析】【分析】连接BO,根据圆周角定理可得,再由圆内接三角形的性质可得OB垂直平分AC,再根据正弦的定义求解即可【详解】如图,连接OB,是的内接三角形,OB垂直平分AC,又,,又AD=8,AO=4,解得:,故答案选B【考点】本题主要考查了

    11、圆的垂径定理的应用,根据圆周角定理求角度是解题的关键6、A【解析】【分析】先求出点A到圆心O的距离,再根据点与圆的位置依据判断可得【详解】解:点A(4,3)到圆心O的距离,OAr5,点A在O上,故选:A【考点】本题考查了对点与圆的位置关系的判断关键要记住若半径为,点到圆心的距离为,则有:当时,点在圆外;当时,点在圆上,当时,点在圆内,也考查了勾股定理的应用7、D【解析】【分析】延长AD,BC交于点E,则E=30,先在RtCDE中,求得CE的长,然后在RtABE中,根据E的正切函数求得AB的长【详解】如图,延长AD,BC交于点E,则E=30,在RtCDE中,CE=2CD=6(30锐角所对直角边等

    12、于斜边的一半),BE=BC+CE=8,在RtABE中,AB=BEtanE=8=.故选D.【考点】本题考查了解直角三角形,特殊角的三角函数值,解此题的关键在于构造一个直角三角形,然后利用锐角三角函数进行解答.8、B【解析】【分析】连接AD,如图,根据圆周角定理得到,然后利用互余计算出,从而得到的度数【详解】解:连接AD,如图,AB为的直径,故选B【考点】本题主要考查了同弦所对的圆周角相等,直径所对的圆周角是直角,解题的关键在于能够熟练掌握相关知识进行求解.9、A【解析】【分析】在O取点,连接 利用圆的内接四边形的性质与一条弧所对的圆心角是它所对的圆周角的2倍,可得答案【详解】解:如图,在O取点,

    13、连接 四边形为O的内接四边形, 故选A【考点】本题考查的是圆的内接四边形的性质,同弧所对的圆心角是它所对的圆周角的2倍,掌握相关知识点是解题的关键10、C【解析】【分析】根据圆周角定理求出DOB,根据等腰三角形性质求出OCD=ODC,根据三角形内角和定理求出即可【详解】解:连接OD,DAB=25,BOD=2DAB=50,COD=90-50=40,OC=OD,OCD=ODC=(180-COD)=70,故选:C【考点】本题考查了圆周角定理,等腰三角形性质,三角形内角和定理的应用,主要考查学生的推理能力,题目比较典型,难度适中二、填空题1、【解析】【分析】连接OA,OC,根据COA=2CBA=90可

    14、求出AC=,然后在RtACD中利用三角函数即可求得CD的长.【详解】解:连接OA,OC,COA=2CBA=90,在RtAOC中,AC=,CDAB,在RtACD中,CD=ACsinCAD=,故答案为.【考点】本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.2、25【解析】【分析】先由切线的性质可得OAC=90,再根据三角形的内角和定理可求出AOD=50,最后根据“同弧所对的圆周角等于圆心角的一半”即可求出B的度数【详解】解:是的切线,OAC=90,AOD=50,B=AOD=25故答案为:25【考点】本题考查了切线的性质和圆周角定理,掌握圆周角定理是解题的关键3、120或6

    15、0【解析】【分析】根据弦垂直平分半径及OB=OC证明四边形OBAC是矩形,再根据OB=OA,OE=求出BOE=60,即可求出答案.【详解】设弦垂直平分半径于点E,连接OB、OC、AB、AC,且在优弧BC上取点F,连接BF、CF,OB=AB,OC=AC,OB=OC,四边形OBAC是菱形,BOC=2BOE,OB=OA,OE=,cosBOE=,BOE=60,BOC=BAC=120,BFC=BOC=60, 弦所对的圆周角为120或60,故答案为:120或60.【考点】此题考查圆的基本知识点:圆的垂径定理,同圆的半径相等的性质,圆周角定理,菱形的判定定理及性质定理,锐角三角函数,熟练掌握圆的各性质定理是

    16、解题的关键.4、10【解析】【分析】根据的长就是圆锥的底面周长即可求解【详解】解:圆锥的高h为12cm,OA=13cm,圆锥的底面半径为=5cm,圆锥的底面周长为10cm,扇形AOC中的长是10cm,故答案为10【考点】本题考查了圆锥的计算,解题的关键是了解圆锥的底面周长等于展开扇形的弧长5、【解析】【分析】当点F与点D运动至共线时,OF长度最大,此时F是AB的中点,则OFAB,设OF为x,则DFx4,在RtBOF中,利用勾股定理进行求解即可【详解】当点F与点D运动至共线时,OF长度最大,如图所示,F是AB的中点,OCAB,设OF为x,则DFx4,ABD是等腰直角三角形,DFABBFx4,在R

    17、tBOF中,OB2OF2+BF2,OBOC6,解得,或(舍去),OF的长的最大值等于,故答案为:【考点】本题考查了垂径定理,直角三角形斜边中线的性质,勾股定理等知识,确定点F与点D运动至共线时,OF长度最大是解题的关键三、解答题1、(1)3;(2)在运动过程中,点运动的轨迹是以为圆心,为半径的圆【解析】【分析】(1)利用垂径定理,然后根据勾股定理即可求得弦心距OD的长;(2)根据圆的定义即可确定【详解】解:连接,作于就是圆心到弦的距离在中,是弦的中点在中,,圆心到弦的距离为由知:是弦的中点中点在运动过程中始终保持据圆的定义,在运动过程中,点运动的轨迹是以为圆心,为半径的圆【考点】考查垂径定理,

    18、作出辅助线,构造直角三角形是解题的关键.2、(1)见解析;(2)见解析;(3)直线l是圆O的切线,理由见解析【解析】【分析】(1)由圆周角定理得AC,由ASA得出AEDCEB;(2)由直角三角形斜边上的中线性质得EFBCBF,由等腰三角形的性质得FEBB,由圆周角定理和对顶角相等证出AAEG90,进而得出结论;(3)作OHAB于H,连接OB,由垂径定理得出AHBHAB2,则EHAHAE1,由勾股定理求出OH1,OB,由一条直线l到圆心O的距离d等于O的半径,即可得出结论【详解】(1)证明:由圆周角定理得:AC,在AED和CEB中,AEDCEB(ASA);(2)证明:ABCD,AEDCEB90,

    19、C+B90,点F是BC的中点,EFBCBF,FEBB,AC,AEGFEBB,A+AEGC+B90,AGE90,FGAD;(3)解:直线l是圆O的切线,理由如下:作OHAB于H,连接OB,如图所示:AE1,BE3,ABAE+BE4,OHAB,AHBHAB2,EHAHAE1,OH1,OB,即O的半径为,一条直线l到圆心O的距离dO的半径,直线l是圆O的切线【考点】本题是圆的综合题目,考查了圆周角定理、垂径定理、切线的判定、全等三角形的判定、直角三角形斜边上的中线性质、等腰三角形的性质、勾股定理等知识;本题综合性强,熟练掌握圆周角定理和垂径定理是解题的关键3、(1);(2)+2=90,见解析【解析】

    20、【分析】(1)连接AB,由已知得到APB=APQ+BPQ=90,根据圆周角定理证得AB是O的直径,然后根据勾股定理求得直径,即可求得半径;(2)连接OA、OB、OQ,由证得APQ=BPQ,即可证得OQON,然后根据三角形内角和定理证得2OPN+PON+NOQ=180,即可证得+2=90【详解】(1)连接AB,APQ=BPQ=45,APB=APQ+BPQ=90,AB是O的直径,AB=,O的半径为;(2)+2=90,证明:连接OA、OB、OQ,APQ=BPQ, ,AOQ=BOQ,OA=OB,OQAB,ONAB,NOOQ,NOQ=90,OP=OQ,OPN=OQP,OPN+OQP+PON+NOQ=18

    21、0,2OPN+PON+NOQ=180,NOP+2OPN=90,NOP=,OPN=,+2=90【解答】解:【点评】本题考查了圆周角定理,垂径定理,熟练掌握性质定理是解题的关键4、见解析【解析】【分析】【初步尝试】如图1,作AOB的角平分线所在直线即为所求;【问题联想】如图2,先作MN的线段垂直平分线交MN于点O,再以O为圆心MO为半径作圆,与垂直平分线的交点即为等腰直角三角形的顶点;【问题再解】如图3先作OB的线段垂直平分线交OB于点N,再以N为圆心NO为半径作圆, 与垂直平分线的交点为M,然后以O为圆心,OM为半径作圆与扇形所交的圆弧即为所求【详解】【初步尝试】如图所示,作AOB的角平分线所在

    22、直线OP即为所求;【问题联想】如图,先作MN的线段垂直平分线交MN于点O,再以O为圆心MO为半径作圆,与垂直平分线的交点即为等腰直角三角形的顶点;【问题再解】如图,先作OB的线段垂直平分线交OB于点N,再以N为圆心NO为半径作圆, 与垂直平分线的交点为M,然后以O为圆心,OM为半径作圆与扇形所交的圆弧CD即为所求【考点】本题考查了尺规作图,角平分线的性质,线段垂直平分线的性质,扇形的面积等知识,解决此类题目的关键是熟悉基本几何图形的性质,掌握基本作图方法5、证明见解析【解析】【详解】分析:连接OA、OB,根据切线的性质得出OAP和OBP全等,从而得出APC=BPC,从而得出APC和BPC全等,从而得出答案详解:连结OA,OB. PA,PB分别切O于点A,B,PAPB,又OAOB,POPO, OAPOBP(SSS),APCBPC,又PCPC,APCBPC(SAS)ACBC. 点睛:本题主要考查的是切线的性质以及三角形全等的证明与性质,属于基础题型根据切线的性质得出PA=PB是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度人教版九年级数学上册第二十四章圆综合训练练习题(含答案解析).docx
    链接地址:https://www.ketangku.com/wenku/file-641576.html
    相关资源 更多
  • 专题06 机械运动(原卷版)-备战2023年中考物理精选考点专练(知识清单+基础+拔高) .docx专题06 机械运动(原卷版)-备战2023年中考物理精选考点专练(知识清单+基础+拔高) .docx
  • 专题06 机械能和简单机械【考题猜想】(解析版) .docx专题06 机械能和简单机械【考题猜想】(解析版) .docx
  • 专题06 机械能和简单机械【考题猜想】(原卷版) .docx专题06 机械能和简单机械【考题猜想】(原卷版) .docx
  • 专题06 机械能和简单机械【考点清单】(解析版) .docx专题06 机械能和简单机械【考点清单】(解析版) .docx
  • 专题06 机械能与化学能的转化模型 -【常考必刷】 2022中考物理常考计算题(能量的转化效率问题专题)之经典模型培优练习 (解析版).docx专题06 机械能与化学能的转化模型 -【常考必刷】 2022中考物理常考计算题(能量的转化效率问题专题)之经典模型培优练习 (解析版).docx
  • 专题06 机械能与化学能的转化模型 -【常考必刷】 2022中考物理常考计算题(能量的转化效率问题专题)之经典模型培优练习 (原卷版).docx专题06 机械能与化学能的转化模型 -【常考必刷】 2022中考物理常考计算题(能量的转化效率问题专题)之经典模型培优练习 (原卷版).docx
  • 专题06 期末核心考点强化练200道(十七大类)八年级(牛津译林版)(原卷版).docx专题06 期末核心考点强化练200道(十七大类)八年级(牛津译林版)(原卷版).docx
  • 专题06 期末核心考点强化练200道(十七大类)-2023-2024学年八年级上学期期末考点大串讲(牛津译林版)(原卷版).docx专题06 期末核心考点强化练200道(十七大类)-2023-2024学年八年级上学期期末考点大串讲(牛津译林版)(原卷版).docx
  • 专题06 有理数的计算_答案.docx专题06 有理数的计算_答案.docx
  • 专题06 文言文阅读(原卷版).docx专题06 文言文阅读(原卷版).docx
  • 专题06 整式中与参数有关的两种考法(解析版)(北师大版) .docx专题06 整式中与参数有关的两种考法(解析版)(北师大版) .docx
  • 专题06 数据的分析(考点清单)解析版.docx专题06 数据的分析(考点清单)解析版.docx
  • 专题06 数据的分析(考点清单)原卷版.docx专题06 数据的分析(考点清单)原卷版.docx
  • 专题06 数列解答-天津市2021-2022学年高二上学期数学期末试题分类汇编.docx专题06 数列解答-天津市2021-2022学年高二上学期数学期末试题分类汇编.docx
  • 专题06 数列-2022届广东省高三上学期期末考试数学试题分类汇编.docx专题06 数列-2022届广东省高三上学期期末考试数学试题分类汇编.docx
  • 专题06 探究质量守恒定律—2022-2023学年九年级化学上册教材实验大盘点(人教版)(学生版).docx专题06 探究质量守恒定律—2022-2023学年九年级化学上册教材实验大盘点(人教版)(学生版).docx
  • 专题06 我国的社会主义市场经济体制 .docx专题06 我国的社会主义市场经济体制 .docx
  • 专题06 我们周围的空气(解析版).docx专题06 我们周围的空气(解析版).docx
  • 专题06 情景选择专项练习(一)-2022-2023学年三年级英语上册期末专项复习试题(译林版三起).docx专题06 情景选择专项练习(一)-2022-2023学年三年级英语上册期末专项复习试题(译林版三起).docx
  • 专题06 情态动词-备战2024年中考英语真题题源解密(全国通用)(原卷版).docx专题06 情态动词-备战2024年中考英语真题题源解密(全国通用)(原卷版).docx
  • 专题06 必修一综合检测-2023年高考英语一轮复习基础知识 基本能力双清(译林版2020) .docx专题06 必修一综合检测-2023年高考英语一轮复习基础知识 基本能力双清(译林版2020) .docx
  • 专题06 必修一Unit 5 -2023年高考英语一轮复习小题多维练(人教版2019).docx专题06 必修一Unit 5 -2023年高考英语一轮复习小题多维练(人教版2019).docx
  • 专题06 形容词副词单句语法填空100题-2022-2023学年高一英语牛津译林版(2020)必修第一册.docx专题06 形容词副词单句语法填空100题-2022-2023学年高一英语牛津译林版(2020)必修第一册.docx
  • 专题06 应用文写作(最新名校模拟题)-冲刺2023年高考英语终极题型预测(新高考专用)1.docx专题06 应用文写作(最新名校模拟题)-冲刺2023年高考英语终极题型预测(新高考专用)1.docx
  • 专题06 应用文写作(最新名校模拟题)-冲刺2023年高考英语终极题型预测(新高考专用).docx专题06 应用文写作(最新名校模拟题)-冲刺2023年高考英语终极题型预测(新高考专用).docx
  • 专题06 应用文写作(最新名校模拟题)-冲刺2023年高考英语终极题型预测(全国卷专用).docx专题06 应用文写作(最新名校模拟题)-冲刺2023年高考英语终极题型预测(全国卷专用).docx
  • 专题06 应用文写作(最新名校模拟题)-冲刺2022年高考英语终极题型押题(浙江专用).docx专题06 应用文写作(最新名校模拟题)-冲刺2022年高考英语终极题型押题(浙江专用).docx
  • 专题06 应用文写作(最新名校模拟题)-冲刺2022年高考英语终极题型押题(全国卷专用).docx专题06 应用文写作(最新名校模拟题)-冲刺2022年高考英语终极题型押题(全国卷专用).docx
  • 专题06 应用文写作(6)-研读近十年高考英语满分书面表达聚焦2023高考.docx专题06 应用文写作(6)-研读近十年高考英语满分书面表达聚焦2023高考.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1