分享
分享赚钱 收藏 举报 版权申诉 / 25

类型2022年人教版九年级数学上册第二十三章旋转定向训练练习题(含答案详解).docx

  • 上传人:a****
  • 文档编号:695810
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:25
  • 大小:1,020.90KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 年人教版 九年级 数学 上册 第二十三 旋转 定向 训练 练习题 答案 详解
    资源描述:

    1、人教版九年级数学上册第二十三章旋转定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,OAB中,AOB=60,OA=4,点B的坐标为(6,0),将OAB绕点A逆时针旋转得到CAD,当点O的对应点

    2、C落在OB上时,点D的坐标为()A(7,3)B(7,5)C(5,5)D(5,3)2、在平面直角坐标系中,点关于原点对称点在()A第一象限B第二象限C第三象限D第四象限3、如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 ABCD的位置,旋转角为(090)若1112,则的大小是()A68B20C28D224、如图,在平面直角坐标系中,已知点P(0,2),点A(4,2)以点P为旋转中心,把点A按逆时针方向旋转60,得点B在,四个点中,直线PB经过的点是()ABCD5、2022年新年贺词中提到“人不负青山,青山定不负人”,下列四个有关环保的图形中,是轴对称图形,但不是中心对称图形的是()ABCD6

    3、、已知两点,若,则点与()A关于y轴对称B关于x轴对称C关于原点对称D以上均不对7、下列四个图形中,中心对称图形是()ABCD8、如图,将RtABC绕直角顶点C顺时针旋转90,得到ABC,连接AA,若1=25,则BAA的度数是()A70B65C60D559、以原点为中心,将点P(4,5)按逆时针方向旋转90,得到的点Q所在的象限为()A第一象限B第二象限C第三象限D第四象限10、如图,正三角形ABC的边长为3,将ABC绕它的外心O逆时针旋转60得到ABC,则它们重叠部分的面积是()A2BCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在坐标系中放置一菱形,已知

    4、,点B在y轴上,先将菱形沿x轴的正方向无滑动翻转,每次翻转60,连续翻转12次,点B的落点依次为,则的横坐标为_2、如图,将矩形绕点逆时针旋转,连接,当为_时3、在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是_4、如图,在四边形ABCD中,将绕点C顺时针旋转60后,点D的对应点恰好与点A重合,得到,则BD=_5、如图,在平面直角坐标系中,点P(1,1),N(2,0),MNP和M1N1P1的顶点都在格点上,MNP与M1N1P1是关于某一点中心对称,则对称中心的坐标为_.三、解答题(5小题,每小题10分,共计50分)1、如图,点,分别在正方形的边,上,且,把绕点顺时针旋转得到(1)求证:

    5、(2)若,求正方形的边长2、如图,在正方形网格中,的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹)(1)在图1中,作关于点对称的;(2)在图2中,作绕点顺时针旋转一定角度后,顶点仍在格点上的3、图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段的端点均在格点上,分别按要求画出图形(1)在图1中画出等腰三角形,且点C在格点上(画出一个即可)(2)在图2中画出以为边的菱形,且点D,E均在格点上4、分别画出绕点逆时针旋转和后的图形5、如图是由边长为的小正方形构成的的网格,线段的端点均在格点上,请按要求画图画出一个即可(1)在图中以为边画一个四边形,使它

    6、的另外两个顶点在格点上,且该四边形是中心对称图形,但不是轴对称图形;(2)在图中以为对角线画一个四边形,使它的另外两个顶点在格点上,且所画四边形既是轴对称图形又是中心对称图形-参考答案-一、单选题1、A【解析】【分析】如图,过点D作DEx轴于点E证明AOC是等边三角形,解直角三角形求出DE,CE,可得结论【详解】解:如图,过点D作DEx轴于点EB(6,0),OB=6,由旋转的性质可知AO=AC=4,OB=CD=6,ACD=AOB=60,AOC=60,AOC是等边三角形,OC=OA=4,ACO=60,DCE=60,CE=CD=3,DE=3,OE=OC+CE=4+3=7,D(7,3),故选:A【考

    7、点】本题考查了旋转变换,含30度角的直角三角形的性质,勾股定理,等边三角形的判定和性质等知识,解题的关键是掌握旋转变换的性质2、D【解析】【分析】先依据,即可得出点P所在的象限,再根据两个点关于原点对称时,它们的坐标符号相反,即可得出结论【详解】解:,点在第二象限,点关于原点对称点在第四象限.故选D【考点】本题主要考查了关于原点对称的两个点的坐标特征,明确关于原点对称的两个点的横、纵坐标均互为相反数是解答的关键3、D【解析】【分析】利用矩形的性质、旋转的性质及多边形内角和定理即可求得【详解】四边形ABCD为矩形,BAD=ABC=ADC=90,矩形ABCD绕点A顺时针旋转到矩形ABCD的位置,旋

    8、转角为,BAB=,BAD=BAD=90,D=D=90,2=1=112,且ABC=D=90,BAB=90-68=22,即=22故选:D【考点】本题考查了旋转的性质,矩形的性质,多边形的内角和定理等知识,矩形性质的运用是关键4、B【解析】【分析】根据含30角的直角三角形的性质可得B(2,2+2),利用待定系数法可得直线PB的解析式,依次将M1,M2,M3,M4四个点的一个坐标代入y=x+2中可解答【详解】解:点A(4,2),点P(0,2),PAy轴,PA=4,由旋转得:APB=60,AP=PB=4,如图,过点B作BCy轴于C,BPC=30,BC=2,PC=2,B(2,2+2),设直线PB的解析式为

    9、:y=kx+b,则,直线PB的解析式为:y=x+2,当y=0时,x+2=0,x=-,点M1(-,0)不在直线PB上,当x=-时,y=-3+2=1,M2(-,-1)在直线PB上,当x=1时,y=+2,M3(1,4)不在直线PB上,当x=2时,y=2+2,M4(2,)不在直线PB上故选:B【考点】本题考查的是图形旋转变换,待定系数法求一次函数的解析式,确定点B的坐标是解本题的关键5、D【解析】【分析】轴对称图形:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形中心对称图形:在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形与另一个图形重合,那么就说

    10、明这两个图形的形状关于这个点成中心对称根据轴对称图形、和中心对称图形的概念,即可完成解题【详解】解:根据轴对称和中心对称的概念,选项A、B、C、D中,是轴对称图形的是B、D,是中心对称图形的是B故选:D【考点】本题主要轴对称图形、中心对称图形的概念,熟练掌握知识点是解答本题的关键6、C【解析】【分析】首先利用等式求出 然后可以根据横纵坐标的关系得出结果【详解】, 两点,点与关于原点对称,故选:C【考点】本题主要考查平面直角坐标系中关于原点对称的点,属于基础题,利用等式找到点与横纵坐标的关系是解题关键7、D【解析】【分析】根据中心对称图形的概念结合各图形的特点求解【详解】解:A、不是中心对称图形

    11、,不符合题意; B、不是中心对称图形,不符合题意; C、不是中心对称图形,不符合题意; D、是中心对称图形,符合题意 故选:D【考点】本题考查了中心对称图形与轴对称图形的概念判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合8、B【解析】【分析】根据旋转的性质可得AC=AC,然后判断出ACA是等腰直角三角形,根据等腰直角三角形的性质可得CAA=45,再根据三角形的内角和定理可得结果【详解】RtABC绕直角顶点C顺时针旋转90得到ABC,AC=AC,ACA是等腰直角三角形,CAA=45,CAB=20=BACBAA=180-70-45=65,故选:B【考点】本题考查了旋转的性质,等腰

    12、直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键9、B【解析】【分析】根据旋转的性质,以原点为中心,将点P(4,5)按逆时针方向旋转90,即可得到点Q所在的象限【详解】解:如图,点P(4,5)按逆时针方向旋转90,得点Q所在的象限为第二象限故选:B【考点】本题考查了坐标与图形变化-旋转,解决本题的关键是掌握旋转的性质10、C【解析】【分析】根据重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形,据此即可求解【详解】解:作AMBC于M,如图:重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全

    13、等的等边三角形ABC是等边三角形,AMBC,ABBC3,BMCMBC,BAM30,AMBM,ABC的面积BCAM3,重叠部分的面积ABC的面积;故选:C【考点】本题考查了三角形的外心、等边三角形的性质以及旋转的性质,理解连接O和正六边形的各个顶点,所得的三角形都为全等的等边三角形是关键二、填空题1、【解析】【分析】连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4,由于,因此点B向右平移8即可到达点,根据点B的坐标就可求出点的坐标【详解】连接AC,如图所示, 四边形OABC是菱形,是等边三角形,画出第5次、第6次、第7次翻转后的图形

    14、,如图所示,由图可知:每翻转6次,图形向右平移4,点B向右平移24=8个单位到点,B点的坐标为,的坐标为,故答案为:【考点】本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力发现“每翻转6次,图形向右平移4”是解决本题的关键2、60【解析】【分析】连接,过作于,交于,根据等腰三角形的性质与判定得,进而得到垂直平分,证得为等边三角形便可【详解】解:连接,过作于,交于,如下图,要使,则,四边形和四边形都是矩形,垂直平分,由旋转性质知,是等边三角形,故当为时,故答案为:【考点】本题主要考查了矩形的性质,旋转的性质,等边三角形的性质与判定,关键是证明垂直平分3、(3,

    15、2)【解析】【分析】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案【详解】解:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,点(3,2)关于原点对称的点的坐标是(3,2),故答案为(3,2)【考点】本题主要考查了平面直角坐标系内两点关于原点对称横纵坐标互为相反数,难度较小4、【解析】【分析】连接BE,如图,根据旋转的性质得BCE=60,CB=CE,BD=AE,再判断BCE为等边三角形得到BE=BC=9,CBE=60,从而有ABE=90,然后利用勾股定理计算出AE即可【详解】解:连接BE,如图,DCB绕点C顺时针旋转60后,点D的对应点恰好与点A重合,得到ACE,

    16、BCE=60,CB=CE,BD=AE,BCE为等边三角形,BE=BC=9,CBE=60,ABC=30,ABE=90,在RtABE中,AE=故答案为:【考点】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等5、(2,1)【解析】【分析】观察图形,根据中心对称的性质即可解答.【详解】点P(1,1),N(2,0),由图形可知M(3,0),M1(1,2),N1(2,2),P1(3,1),关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,对称中心的坐标为(2,1),故答案为(2,1)【考点】本题考查了中心对称的性质:关

    17、于中心对称的两个图形能够完全重合; 关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分三、解答题1、(1)证明见解析;(2)正方形的边长为6【解析】【分析】(1)先根据旋转的性质可得,再根据正方形的性质、角的和差可得,然后根据三角形全等的判定定理即可得证;(2)设正方形的边长为x,从而可得,再根据旋转的性质可得,从而可得,然后根据三角形全等的性质可得,最后在中,利用勾股定理即可得【详解】(1)由旋转的性质得:四边形ABCD是正方形,即,即在和中,;(2)设正方形的边长为x,则由旋转的性质得:由(1)已证:又四边形ABCD是正方形则在中,即解得或(不符题意,舍去)故正方形的边

    18、长为6【考点】本题考查了正方形的性质、旋转的性质、三角形全等的判定定理与性质、勾股定理等知识点,较难的是题(2),熟练掌握旋转的性质与正方形的性质是解题关键2、(1)见解析;(2)见解析【解析】【分析】(1)分别作出A,B,C三点关于O点对称的点,然后顺次连接即可得;(2)计算得出AB=,AC=5,再根据旋转作图即可【详解】(1)如图1所示;(2)根据勾股定理可计算出AB=,AC=5,再作图,如图2所示【考点】本题考查复杂-应用与设计,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题3、 (1)见解析(2)见解析【解析】【分析】利用轴对称图形、中心对称图形的特点画出符合条件的图形即可

    19、;(1)答案不唯一(2)【考点】本题考查了轴对称图形、中心对称图形的特点,熟练掌握特殊三角形与四边形的性质才能准确画出符合条件的图形4、画图见解析【解析】【分析】分别确定绕点逆时针旋转后的对应点 再顺次连接即可得到答案;分别确定绕点逆时针旋转后的对应点 再顺次连接即可得到答案.【详解】解:如图,是绕点逆时针旋转后的三角形,如图,是绕点逆时针旋转后的三角形,【考点】本题考查的是旋转的作图,掌握旋转的性质,旋转中心,旋转角,旋转方向是解题的关键.5、 (1)见解析;(2)见解析【解析】【分析】(1)根据旋转和轴对称的性质即可在图中以为边画一个四边形,使它的另外两个顶点在格点上,且该四边形是中心对称图形,但不是轴对称图形;(2)根据轴对称性质和中心对称性质即可在图中以为对角线画一个四边形,使它的另外两个顶点在格点上,且所画四边形既是轴对称图形又是中心对称图形(1)如图,四边形即为所求;(2)如图,四边形即为所求【考点】本题主要考查作图的旋转变换和轴对称变换,解题的关键是掌握中心对称和轴对称图形的概念

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年人教版九年级数学上册第二十三章旋转定向训练练习题(含答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-695810.html
    相关资源 更多
  • 专题09 应用文写作(9)-研读近十年高考英语满分书面表达聚焦2023高考.docx专题09 应用文写作(9)-研读近十年高考英语满分书面表达聚焦2023高考.docx
  • 专题09 应用文写作12篇(第二期)-2023高考英语名校模拟真题速递(新高考专用).docx专题09 应用文写作12篇(第二期)-2023高考英语名校模拟真题速递(新高考专用).docx
  • 专题09 应用文写作-2022-2023学年高二英语上学期期末专项复习(译林版2020).docx专题09 应用文写作-2022-2023学年高二英语上学期期末专项复习(译林版2020).docx
  • 专题09 平面直角坐标系(解析版).docx专题09 平面直角坐标系(解析版).docx
  • 专题09 平面直角坐标系(原卷版).docx专题09 平面直角坐标系(原卷版).docx
  • 专题09 平面直角坐标系与函数(11个高频考点)(举一反三)(全国版)(解析版).docx专题09 平面直角坐标系与函数(11个高频考点)(举一反三)(全国版)(解析版).docx
  • 专题09 平面直角坐标系与函数(11个高频考点)(举一反三)(全国版)(原卷版).docx专题09 平面直角坐标系与函数(11个高频考点)(举一反三)(全国版)(原卷版).docx
  • 专题09 平面直角坐标系与函数基础(解析版).docx专题09 平面直角坐标系与函数基础(解析版).docx
  • 专题09 平面直角坐标系与函数基础(考点回归).docx专题09 平面直角坐标系与函数基础(考点回归).docx
  • 专题09 平面直角坐标系与函数基础(原卷版).docx专题09 平面直角坐标系与函数基础(原卷版).docx
  • 专题09 平面直角坐标系与函数基础知识(共30道)(教师版)(02期)-2023年中考数学真题分类训练.docx专题09 平面直角坐标系与函数基础知识(共30道)(教师版)(02期)-2023年中考数学真题分类训练.docx
  • 专题09 平面直角坐标系与函数基础知识(共30道)(学生版)(02期)-2023年中考数学真题分类训练.docx专题09 平面直角坐标系与函数基础知识(共30道)(学生版)(02期)-2023年中考数学真题分类训练.docx
  • 专题09 平面向量及复数、推理证明-【口袋书】2022年高考数学复习思维导图(新高考地区专用).docx专题09 平面向量及复数、推理证明-【口袋书】2022年高考数学复习思维导图(新高考地区专用).docx
  • 专题09 平面向量、不等式及复数(解析版).docx专题09 平面向量、不等式及复数(解析版).docx
  • 专题09 平面向量、不等式及复数(原卷版).docx专题09 平面向量、不等式及复数(原卷版).docx
  • 专题09 平面向量 9.3三角形四心及面积问题 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题09 平面向量 9.3三角形四心及面积问题 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题09 平面向量 9.2数量积 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题09 平面向量 9.2数量积 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题09 平面向量 9.2数量积 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题09 平面向量 9.2数量积 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题09 平面向量 9.1线性运算、基本定理和坐标运算 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题09 平面向量 9.1线性运算、基本定理和坐标运算 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题09 幂运算(三大类型)-2022-2023学年七年级数学下册《高分突破•培优新方法》(苏科版).docx专题09 幂运算(三大类型)-2022-2023学年七年级数学下册《高分突破•培优新方法》(苏科版).docx
  • 专题09 导数的概念意义及运算(考点清单)(解析版).docx专题09 导数的概念意义及运算(考点清单)(解析版).docx
  • 专题09 导数的概念意义及运算(考点清单)(原卷版).docx专题09 导数的概念意义及运算(考点清单)(原卷版).docx
  • 专题09 导数大题训练理科(教师版).docx专题09 导数大题训练理科(教师版).docx
  • 专题09 导数压轴题之拉格朗日中值定理详述版(解析版).docx专题09 导数压轴题之拉格朗日中值定理详述版(解析版).docx
  • 专题09 导数压轴题之拉格朗日中值定理详述版(原卷版).docx专题09 导数压轴题之拉格朗日中值定理详述版(原卷版).docx
  • 专题09 家庭生活-备战2022高考英语阅读七选五热点话题 体裁分类训练(高考模拟 名校真题).docx专题09 家庭生活-备战2022高考英语阅读七选五热点话题 体裁分类训练(高考模拟 名校真题).docx
  • 专题09 实验设计重方法-备战2022年中考化学必背手册(南京专用).docx专题09 实验设计重方法-备战2022年中考化学必背手册(南京专用).docx
  • 专题09 完成图表(名校模拟 地区真题)-冲刺2023年中考英语必考题型终极预测(成都专用).docx专题09 完成图表(名校模拟 地区真题)-冲刺2023年中考英语必考题型终极预测(成都专用).docx
  • 专题09 完成句子80题-2023年中考英语逆袭冲刺名校模拟真题特快专递(广州专用).docx专题09 完成句子80题-2023年中考英语逆袭冲刺名校模拟真题特快专递(广州专用).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1