2022年人教版九年级数学上册第二十三章旋转难点解析练习题(含答案详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版 九年级 数学 上册 第二十三 旋转 难点 解析 练习题 答案 详解
- 资源描述:
-
1、人教版九年级数学上册第二十三章旋转难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中, 将绕点逆时针旋转得到,其中点与 点是对应点,且点在同一条直线上;则的长为()ABCD2、若点P(2,
2、)与点Q(,)关于原点对称,则mn的值分别为()ABC1D53、如图,已知正方形的边长为4,以点C为圆心,2为半径作圆,P是上的任意一点,将点P绕点D按逆时针方向旋转,得到点Q,连接,则的最大值是()A6BCD4、将矩形绕点顺时针旋转,得到矩形当时,下列针对值的说法正确的是()A或B或CD5、如图,已知是等边三角形,边长为,将绕点逆时针旋转后点的对应点的坐标是()ABCD6、下列图形中既是轴对称图形,也是中心对称图形的是()ABCD7、将按如图方式放在平面直角坐标系中,其中,顶点的坐标为,将绕原点逆时针旋转,每次旋转60,则第2023次旋转结束时,点对应点的坐标为()ABCD8、如图,中,若将
3、绕点逆时针旋转得到,连接,则在点运动过程中,线段的最小值为()A1BCD29、将抛物线先绕坐标原点旋转,再向右平移个单位长度,所得抛物线的解析式为()ABCD10、在平面直角坐标系中,点关于原点对称点在()A第一象限B第二象限C第三象限D第四象限第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在坐标系中放置一菱形,已知,点B在y轴上,先将菱形沿x轴的正方向无滑动翻转,每次翻转60,连续翻转12次,点B的落点依次为,则的横坐标为_2、如图,正方形的边长为4,点E是对角线上的动点(点E不与A,C重合),连接交于点F,线段绕点F逆时针旋转得到线段,连接下列结论:;若四边
4、形的面积是正方形面积的一半,则的长为;其中正确的是_(填写所有正确结论的序号)3、如图,在正方形中,顶点A,在坐标轴上,且,以为边构造菱形(点在轴正半轴上),将菱形与正方形组成的图形绕点逆时针旋转,每次旋转45,则第2022次旋转结束时,点的坐标为_4、如图,ABC绕点A按逆时针方向旋转50后的图形为AB1C1,则ABB1_5、如图,在菱形OBCD中,OB1,相邻两内角之比为1:2,将菱形OBCD绕顶点O顺时针旋转90,得到菱形OBCD视为一次旋转,则菱形旋转45次后点C的坐标为_三、解答题(5小题,每小题10分,共计50分)1、如图,在RtABC中,BAC90,ACB30,将ABC绕点C逆时
5、针旋转60得到CDE,点A、B的对应点分别是D、E,点F是边BC中点,连结AD、EF(1)求证:ACD是等边三角形;(2)判断AD与EF有怎样的数量关系,并说明理由2、已知和都是等腰直角三角形,(1)如图1,连接,求证:;(2)将绕点O顺时针旋转如图2,当点M恰好在边上时,求证:;当点A,M,N在同一条直线上时,若,请直接写出线段的长3、明遇到这样一个问题:如图,在四边形ABCD中,B40,C50,ABCD,AD2,BC4,求四边形ABCD的面积(1)经过思考小明想到如下方法:以BC为边作正方形BCMN,将四边形ABCD绕着正方形BCMN的中心按顺时针方向旋转90,180,270,而分别得到四
6、边形FNBA,EMNF,DCME,则四边形ADEF是_(填一种特殊的平行四边形)S四边形ABCD_(2)解决问题:如图,在四边形ABCD中,BAD140,CDA160,ABCD,AD6,BC12,则四边形ABCD的面积为多少?4、如图,在正方形ABCD中,点P在直线BC上,作射线AP,将射线AP绕点A逆时针旋转45,得到射线AQ,交直线CD于点Q,过点B作BEAP于点E,交AQ于点F,连接DF(1)依题意补全图形;(2)用等式表示线段BE,EF,DF之间的数量关系,并证明5、在RtABC中,ACB90,AC2,ABC30,点A关于直线BC的对称点为A,连接AB,点P为直线BC上的动点(不与点B
7、重合),连接AP,将线段AP绕点P逆时针旋转60,得到线段PD,连接AD,BD【问题发现】(1)如图1,当点D在直线BC上时,线段BP与AD的数量关系为,DAB;【拓展探究】(2)如图2,当点P在BC的延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;【问题解决】(3)当BDA30时,求线段AP的长度-参考答案-一、单选题1、A【解析】【分析】根据旋转的性质说明ACC是等腰直角三角形,且CAC=90,理由勾股定理求出CC值,最后利用BC=CC-CB即可【详解】解:根据旋转的性质可知AC=AC,ACB=ACB=45,BC=BC=1,ACC是等腰直角三角形,且CAC=90
8、,CC=4,BC=4-1=3故选:A【考点】本题主要考查了旋转的性质、勾股定理,在解决旋转问题时,要借助旋转的性质找到旋转角和旋转后对应的量2、B【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数解答【详解】解:P(2,-n)与点Q(-m,-3)关于原点对称,2=-(-m),-n=-(-3),m=2,n=-3, 故选:B【考点】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律3、A【解析】【分析】连接CP,AQ,以A为圆心,以AQ为半径画圆,延长BA交于E根据正方形的性质,旋转的性质,角的和差关系,全等三角形的判定定理和性质求出AQ的长度,根据三角形三边关
9、系确定当点Q与点E重合时,BQ取得最大值,最后根据线段的和差关系计算即可【详解】解:如下图所示,连接CP,AQ,以A为圆心,以AQ为半径画圆,延长BA交于E正方形ABCD的边长为4,的半径为2,AD=CD=AB=4,ADC=90,CP=2点P绕点D按逆时针方向旋转90得到点Q,QDP=90,QD=PDADC=QDPADC-QDC=QDP-QDC,即ADQ=CDPAQ=CP=2AE=AQ=2P是上任意一点,点Q在上移动当点Q与点E重合时,BQ取得最大值为BEBE=AE+AB=6故选:A【考点】本题考查正方形的性质,旋转的性质,角的和差关系,全等三角形的判定定理和性质,三角形三边关系,线段的和差关
10、系,综合应用这些知识点是解题关键4、A【解析】【分析】当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据DAG=60,即可得到旋转角的度数【详解】如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:当点G在AD右侧时,取BC的中点H,连接GH交AD于M,GC=GB,GHBC,四边形ABHM是矩形,AM=BH=,GM垂直平分AD,GD=GA=DA,ADG是等边三角形,DAG=60,旋转角=60;当点G在AD左侧时,同理可得ADG是等边三角形,DAG=60,旋转角=360-60=300,故选:A【考点】本题主要考查了旋转的性质,全等三角形的判定与性质的运用,解题时注意:对应
11、点与旋转中心所连线段的夹角等于旋转角5、B【解析】【分析】过点作于点过点作轴于点求出点的坐标,再利用全等三角形的性质求解【详解】解:过点作于点,过点作轴于点 是等边三角形,在和中,故选:【考点】本题主要考查了等边三角形的判定与性质,旋转的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题6、B【解析】【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合
12、题意故选:B【考点】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合7、A【解析】【分析】根据旋转性质,可知6次旋转为1个循环,故先需要求出前6次循环对应的A点坐标即可,利用全等三角形性质求出第一次旋转对应的A点坐标,之后第2次旋转,根据图形位置以及长,即可求出,第3、4、5次分别利用关于原点中心对称,即可求出,最后一次和A点重合,再判断第2023次属于循环中的第1次,最后即可得出答案【详解】解:由题意可知:6次旋转为1个循环,故只需要求出前6次循环对应的A点坐标即可第一次旋转时:
13、过点作轴的垂线,垂足为,如下图所示:由的坐标为可知:,在中, 由旋转性质可知:, , 在与中: , 此时点对应坐标为,当第二次旋转时,如下图所示:此时A点对应点的坐标为当第3次旋转时,第3次的点A对应点与A点中心对称,故坐标为当第4次旋转时,第4次的点A对应点与第1次旋转的A点对应点中心对称,故坐标为当第5次旋转时,第5次的点A对应点与第2次旋转的A点对应点中心对称,故坐标为第6次旋转时,与A点重合故前6次旋转,点A对应点的坐标分别为:、由于,故第2023次旋转时,A点的对应点为故选:A【考点】本题主要是考查了旋转性质、中心对称求点坐标、三角形全等以及点的坐标特征,熟练利用条件证明全等三角形,
14、;通过旋转和中心对称求解对应点坐标,是求解该题的关键8、B【解析】【分析】在AB上截取AQ=AO=1,利用SAS证明AQDAOE,推出QD=OE,当QDBC时,QD的值最小,即线段OE有最小值,利用勾股定理即可求解【详解】如图,在AB上截取AQ=AO=1,连接DQ,将AD绕A点逆时针旋转90得到AE,BAC=DAE=90,BAC-DAC =DAE-DAC,即BAD=CAE,在AQD和AOE中,AQDAOE(SAS),QD=OE,D点在线段BC上运动,当QDBC时,QD的值最小,即线段OE有最小值,ABC是等腰直角三角形,B=45,QDBC,QBD是等腰直角三角形,AB=AC=3,AO=1,QB
15、=2,由勾股定理得QD=QB=,线段OE有最小值为,故选:B【考点】本题考查了勾股定理,等腰直角三角形的判定和性质,全等三角形的判定和性质,旋转的性质,熟记各图形的性质并准确识图是解题的关键9、C【解析】【分析】先根据点绕坐标原点旋转的坐标变换规律、待定系数法求出旋转后的抛物线的解析式,再根据二次函数的图象平移的规律即可得【详解】将抛物线的顶点式为则其与x轴的交点坐标为,顶点坐标为点绕坐标原点旋转的坐标变换规律:横、纵坐标均变为相反数则绕坐标原点旋转后,所得抛物线与x轴的交点坐标为,顶点坐标为设旋转后所得抛物线为将点代入得:,解得即旋转后所得抛物线为则再向右平移个单位长度,所得抛物线的解析式为
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
山东省招远市第一中学2020-2021学年高二数学下学期4月月考检测试题(PDF).pdf
