分享
分享赚钱 收藏 举报 版权申诉 / 27

类型2022年人教版九年级数学上册第二十四章圆定向测评试题(解析版).docx

  • 上传人:a****
  • 文档编号:696226
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:27
  • 大小:667.45KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 年人教版 九年级 数学 上册 第二 十四 定向 测评 试题 解析
    资源描述:

    1、人教版九年级数学上册第二十四章圆定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,拱桥可以近似地看作直径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,其正下方的路面AB长度为150m,那

    2、么这些钢索中最长的一根的长度为()A50mB40mC30mD25m2、如图所示,一个半径为r(r1)的图形纸片在边长为10的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分面积是()ABCD3、如图,点A,B,C,D,E是O上5个点,若ABAO2,将弧CD沿弦CD翻折,使其恰好经过点O,此时,图中阴影部分恰好形成一个“钻戒型”的轴对称图形,则“钻戒型”(阴影部分)的面积为()AB43C44D4、以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内O上的一点,若DAB25,则OCD()A50B40C70D305、如图,AB为的直径,C,D为上的两点,若,则的

    3、度数为()ABCD6、已知一个扇形的弧长为,圆心角是,则它的半径长为( )A6cmB5cmC4cmD3cm7、如图,破残的轮子上,弓形的弦AB为4m,高CD为1m,则这个轮子的半径长为()AmBmC5mDm8、如图,是的直径,点C为圆上一点,的平分线交于点D,则的直径为()ABC1D29、如图,点O是ABC的内心,若A70,则BOC的度数是()A120B125C130D13510、如图,PA,PB是O的切线,A,B是切点,点C为O上一点,若ACB70,则P的度数为() A70B50C20D40第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,把一个圆锥沿母线OA剪开

    4、,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中的长是_cm(计算结果保留)2、如图,已知的半径为2,内接于,则_3、如图,直线、相交于点,半径为1cm的的圆心在直线上,且与点的距离为8cm,如果以2cm/s的速度,由向的方向运动,那么_秒后与直线相切.4、圆锥形冰淇淋的母线长是12cm,侧面积是60cm2,则底面圆的半径长等于_5、如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_三、解答题(5小题,每小题10分,共计50分)1、如图,分别切、于点、切于

    5、点,交于点与不重合)(1)用直尺和圆规作出;(保留作图痕迹,不写作法)(2)若半径为1,求的长2、如图,比较与的长度,并证明你的结论3、已知P为O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有点A、B(不与P、Q重合),连接AP、BP,若APQ=BPQ(1)如图1,当APQ=45,AP=1,BP=2时,求O的半径。(2)如图2,连接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,设NOP=,OPN=,若AB平行于ON,探究与的数量关系。4、如图,在RtABC中,ACB90,BAC的平分线交BC于点O,OC1,以点O为圆心OC为半径作半圆(1)求证:AB为

    6、O的切线;(2)如果tanCAO,求cosB的值5、如图所示,(1)已知,求以为直径的半圆面积及扇形的面积;(2)若的长度未知,已知阴影甲的面积为16平方厘米,能否求阴影乙的面积?若能,请直接写出结果;若不能,请说明理由-参考答案-一、单选题1、D【解析】【分析】设圆弧的圆心为O,过O作OCAB于C,交于D,连接OA,先由垂径定理得ACBCAB75m,再由勾股定理求出OC100m,然后求出CD的长即可【详解】解:设圆弧的圆心为O,过O作OCAB于C,交于D,连接OA,则OAOD250125(m),ACBCAB15075(m),OC100(m),CDODOC12510025(m),即这些钢索中最

    7、长的一根为25m,故选:D【考点】本题考查了垂径定理和勾股定理等知识;熟练掌握垂径定理和勾股定理是解题的关键2、C【解析】【分析】当运动到正六边形的角上时,圆与两边的切点分别为,连接,根据正六边形的性质可知,故,再由锐角三角函数的定义用表示出的长,可知圆形纸片不能接触到的部分的面积,由此可得出结论【详解】解:如图所示,连接,此多边形是正六边形,圆形纸片不能接触到的部分的面积故选:C【考点】本题考查的是正多边形和圆,熟知正六边形的性质是解答此题的关键3、A【解析】【分析】连接CD、OE,根据题意证明四边形OCED是菱形,然后分别求出扇形OCD和菱形OCED以及AOB的面积,最后利用割补法求解即可

    8、【详解】解:连接CD、OE,由题意可知OCODCEED,弧弧,S扇形ECDS扇形OCD,四边形OCED是菱形,OE垂直平分CD,由圆周角定理可知CODCED120,CD222,ABOAOB2,AOB是等边三角形,SAOB22,S阴影2S扇形OCD2S菱形OCED+SAOB2(22)+2(2)+3,故选:A【考点】此题考查了菱形的性质和判定,等边三角形的性质,圆周角定理,求解圆中阴影面面积等知识,解题的关键是根据题意做出辅助线,利用割补法求解4、C【解析】【分析】根据圆周角定理求出DOB,根据等腰三角形性质求出OCD=ODC,根据三角形内角和定理求出即可【详解】解:连接OD,DAB=25,BOD

    9、=2DAB=50,COD=90-50=40,OC=OD,OCD=ODC=(180-COD)=70,故选:C【考点】本题考查了圆周角定理,等腰三角形性质,三角形内角和定理的应用,主要考查学生的推理能力,题目比较典型,难度适中5、B【解析】【分析】连接AD,如图,根据圆周角定理得到,然后利用互余计算出,从而得到的度数【详解】解:连接AD,如图,AB为的直径,故选B【考点】本题主要考查了同弦所对的圆周角相等,直径所对的圆周角是直角,解题的关键在于能够熟练掌握相关知识进行求解.6、A【解析】【分析】设扇形半径为rcm,根据扇形弧长公式列方程计算即可.【详解】设扇形半径为rcm,则=5,解得r=6cm.

    10、故选A.【考点】本题主要考查扇形弧长公式.7、D【解析】【分析】连接OB,由垂径定理得出BD的长;连接OB,再在中,由勾股定理得出方程,解方程即可【详解】解:连接OB,如图所示:由题意得:OCAB,ADBDAB2(m),在RtOBD中,根据勾股定理得:OD2+BD2OB2,即(OB1)2+22OB2,解得:OB(m),即这个轮子的半径长为m,故选:D【考点】本题主要考查垂径定理的应用以及勾股定理,熟练掌握垂径定理和勾股定理是解题的关键8、B【解析】【分析】过D作DEAB垂足为E,先利用圆周角的性质和角平分线的性质得到DE=DC=1,再说明RtDEBRtDCB得到BE=BC,然后再利用勾股定理求

    11、得AE,设BE=BC=x,AB=AE+BE=x+,最后根据勾股定理列式求出x,进而求得AB【详解】解:如图:过D作DEAB,垂足为EAB是直径ACB=90ABC的角平分线BDDE=DC=1在RtDEB和RtDCB中DE=DC、BD=BDRtDEBRtDCB(HL)BE=BC在RtADE中,AD=AC-DC=3-1=2AE=设BE=BC=x,AB=AE+BE=x+在RtABC中,AB2=AC2+BC2则(x+)2=32+x2,解得x=AB=+=2故填:2【考点】本题主要考查了圆周角定理、角平分线的性质以及勾股定理等知识点,灵活应用相关知识成为解答本题的关键9、B【解析】【分析】利用内心的性质得O

    12、BCABC,OCBACB,再根据三角形内角和计算出OBC+OCB55,然后再利用三角形内角和计算BOC的度数【详解】解:O是ABC的内心,OB平分ABC,OC平分ACB,OBCABC,OCBACB,OBC+OCB(ABC+ACB)(180A)(18070)55,BOC180(OBC+OCB)18055125故选:B【考点】此题主要考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角10、D【解析】【分析】首先连接OA,OB,由PA,PB为O的切线,根据切线的性质,即可得OAP=OBP=90,又由圆周角定理,可求得AOB的度数,继而可求得答案【

    13、详解】解:连接OA,OB,PA,PB为O的切线,OAP=OBP=90,ACB=70,AOB=2P=140,P=360-OAP-OBP-AOB=40故选:D【考点】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用二、填空题1、10【解析】【分析】根据的长就是圆锥的底面周长即可求解【详解】解:圆锥的高h为12cm,OA=13cm,圆锥的底面半径为=5cm,圆锥的底面周长为10cm,扇形AOC中的长是10cm,故答案为10【考点】本题考查了圆锥的计算,解题的关键是了解圆锥的底面周长等于展开扇形的弧长2、【解析】【详解】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角

    14、的二倍,可以求得AOB的度数,然后根据勾股定理即可求得AB的长详解:连接AD、AE、OA、OB,O的半径为2,ABC内接于O,ACB=135,ADB=45,AOB=90,OA=OB=2,AB=2,故答案为2点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答3、3或5【解析】【分析】分类讨论:当点P在当点P在射线OA时P与CD相切,过P作PECD与E,根据切线的性质得到PE=1cm,再利用含30的直角三角形三边的关系得到OP=2PE=2cm,则P的圆心在直线AB上向右移动了(8-2)cm后与CD相切,即可得到P移动所用的时间;当点P在射线

    15、OB时P与CD相切,过P作PECD与F,同前面一样易得到此时P移动所用的时间【详解】当点P在射线OA时P与CD相切,如图,过P作PECD与E,PE=1cm,AOC=30,OP=2PE=2cm,P的圆心在直线AB上向右移动了(8-2)cm后与CD相切,P移动所用的时间=3(秒);当点P在射线OB时P与CD相切,如图,过P作PECD与F,PF=1cm,AOC=DOB=30,OP=2PF=2cm,P的圆心在直线AB上向右移动了(8+2)cm后与CD相切,P移动所用的时间=5(秒)故答案为3或5【考点】本题考查直线与圆的位置关系:直线与有三种位置关系(相切、相交、相离)也考查了切线的性质解题关键是熟练

    16、掌握以上性质.4、5cm.【解析】【分析】设圆锥的底面圆的半径长为rcm,根据圆锥的侧面积公式计算即可.【详解】解:设圆锥的底面圆的半径长为rcm则2r1260,解得:r5(cm),故答案为5cm【考点】圆锥的侧面积公式是本题的考点,牢记其公式是解题的关键.5、(2,6)【解析】【分析】此题涉及的知识点是平面直角坐标系图像性质的综合应用过点M作MFCD于F,过C作CEOA于E,在RtCMF中,根据勾股定理即可求得MF与EM,进而就可求得OE,CE的长,从而求得C的坐标【详解】四边形OCDB是平行四边形,点B的坐标为(16,0),CDOA,CD=OB=16,过点M作MFCD于F,则 过C作CEO

    17、A于E,A(20,0),OA=20,OM=10,OE=OMME=OMCF=108=2,连接MC, 在RtCMF中, 点C的坐标为(2,6).故答案为(2,6).【考点】此题重点考察学生对坐标与图形性质的实际应用,勾股定理,注意数形结合思想在解题的关键三、解答题1、(1)见解析;(2)【解析】【分析】(1)以A为圆心,为半径画弧交于,作直线交于点,直线即为所求(2)设,利用勾股定理构建方程即可解决问题【详解】解:(1)如图,直线即为所求(2)连接,是的内切圆,是切点,四边形是矩形,四边形是正方形,设,在中,【考点】本题考查作图复杂作图,切线的性质,勾股定理等知识,解题的关键是理解题意,灵活运用所

    18、学知识解决问题,属于中考常考题型2、,见解析【解析】【分析】根据圆心角、弧、弦的关系,由AD=BC解得,继而得到【详解】解:,证明如下:ADBC,即【考点】本题考查圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等3、(1);(2)+2=90,见解析【解析】【分析】(1)连接AB,由已知得到APB=APQ+BPQ=90,根据圆周角定理证得AB是O的直径,然后根据勾股定理求得直径,即可求得半径;(2)连接OA、OB、OQ,由证得APQ=BPQ,即可证得OQON,然后根据三角形内角和定理证得2OPN+PON+NOQ=180,即可

    19、证得+2=90【详解】(1)连接AB,APQ=BPQ=45,APB=APQ+BPQ=90,AB是O的直径,AB=,O的半径为;(2)+2=90,证明:连接OA、OB、OQ,APQ=BPQ, ,AOQ=BOQ,OA=OB,OQAB,ONAB,NOOQ,NOQ=90,OP=OQ,OPN=OQP,OPN+OQP+PON+NOQ=180,2OPN+PON+NOQ=180,NOP+2OPN=90,NOP=,OPN=,+2=90【解答】解:【点评】本题考查了圆周角定理,垂径定理,熟练掌握性质定理是解题的关键4、(1)证明见解析(2)【解析】【详解】(1)证明:作OMAB于M,OA平分CAB,OCAC,OM

    20、AB,OCOMAB是O的切线(2)设BMx,OBy,则y2x21tanCAO ,ACAM3cosB , x23xy2y由可得y3x1,(3x1)2x21x ,y cosB 5、(1)半圆面积为157,扇形的面积为157;(2)能,16平方厘米【解析】【分析】(1)我们运用圆的面积公式求出半圆的面积,用扇形的面积公式求出扇形的面积即可(2)我们借助第一题的解答结果,运用等量代换的方法可以求出阴影乙的面积【详解】(1)因为OB20,所以S半圆(202)2,100,157;S扇形BOCR2,202,157;答:半圆面积是157,扇形COB的面积是157(2)能求阴影乙的面积:因为,AOB90,COB45,所以半圆的直径OB,BOD的底是OB,高是半圆的半径即OB,所以S半圆OBOB,OB2;S扇形BOCOB2,OB2;OB2;所以S半圆S扇形BOC,S半圆S扇形,所以S甲S乙,因为S甲16平方厘米,所以S乙16平方厘米,答:阴影乙的面积是16平方厘米【考点】此题主要考查圆及扇形的面积,解题的关键是熟知公式的运用

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年人教版九年级数学上册第二十四章圆定向测评试题(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-696226.html
    相关资源 更多
  • 中考生物专题练习单细胞生物(含解析).docx中考生物专题练习单细胞生物(含解析).docx
  • 中考生物 边角知识点复习4.docx中考生物 边角知识点复习4.docx
  • 中考生物 边角知识点复习2.docx中考生物 边角知识点复习2.docx
  • 中考生物 3.5 第三单元 第五章 人体生命活动的调节复习导学案(无答案) 济南版.docx中考生物 3.5 第三单元 第五章 人体生命活动的调节复习导学案(无答案) 济南版.docx
  • 中考生物 3.3 第三单元 第三章 人体内的物质运输复习导学案(无答案) 济南版.docx中考生物 3.3 第三单元 第三章 人体内的物质运输复习导学案(无答案) 济南版.docx
  • 中考特训(四)溶解度曲线的综合运用.docx中考特训(四)溶解度曲线的综合运用.docx
  • 中考特训(四)中和反应的实验探究.docx中考特训(四)中和反应的实验探究.docx
  • 中考特训(四)中和反应的实验探究.docx中考特训(四)中和反应的实验探究.docx
  • 中考特训(十)实验方案的设计与评价.docx中考特训(十)实验方案的设计与评价.docx
  • 中考特训(十一)化学物质的分类.docx中考特训(十一)化学物质的分类.docx
  • 中考特训(六)物质的检验、鉴别与除杂.docx中考特训(六)物质的检验、鉴别与除杂.docx
  • 中考特训(六)中和反应的探究.docx中考特训(六)中和反应的探究.docx
  • 中考特训(六)物质的检验、鉴别与除杂.docx中考特训(六)物质的检验、鉴别与除杂.docx
  • 中考特训(六)中和反应的探究.docx中考特训(六)中和反应的探究.docx
  • 中考特训(八)有机化合物成分的确定.docx中考特训(八)有机化合物成分的确定.docx
  • 中考特训(八)单质、氧化物、酸、碱、盐的相互反应.docx中考特训(八)单质、氧化物、酸、碱、盐的相互反应.docx
  • 中考特训(八)有机化合物成分的确定.docx中考特训(八)有机化合物成分的确定.docx
  • 中考特训(五)碱变质的探究.docx中考特训(五)碱变质的探究.docx
  • 中考特训(五)单质、氧化物、酸、碱、盐的相互反应.docx中考特训(五)单质、氧化物、酸、碱、盐的相互反应.docx
  • 中考特训(二)溶解度曲线的综合运用.docx中考特训(二)溶解度曲线的综合运用.docx
  • 中考特训(三)有关溶质质量分数的综合计算.docx中考特训(三)有关溶质质量分数的综合计算.docx
  • 中考特训(三)有关溶质质量分数的综合计算.docx中考特训(三)有关溶质质量分数的综合计算.docx
  • 中考特训(七)实验方案的设计与评价.docx中考特训(七)实验方案的设计与评价.docx
  • 中考特训(七)复分解反应发生条件的判断和应用.docx中考特训(七)复分解反应发生条件的判断和应用.docx
  • 中考特训(一)金属活动顺序的应用.docx中考特训(一)金属活动顺序的应用.docx
  • 中考特训(一)金属活动性顺序的应用.docx中考特训(一)金属活动性顺序的应用.docx
  • 中考特训(一)金属活动性顺序的应用.docx中考特训(一)金属活动性顺序的应用.docx
  • 中考特训(四) 投影与视图.docx中考特训(四) 投影与视图.docx
  • 中考特训(二) 相似.docx中考特训(二) 相似.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1