分享
分享赚钱 收藏 举报 版权申诉 / 26

类型2022年综合复习人教版九年级数学上册期末专项测评试题 A卷(解析版).docx

  • 上传人:a****
  • 文档编号:709413
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:26
  • 大小:518.89KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年综合复习人教版九年级数学上册期末专项测评试题 A卷解析版 2022 综合 复习 人教版 九年级 数学 上册 期末 专项 测评 试题 解析
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末专项测评试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、若点P(2,)与点Q(,)关于原点对称,则mn的值分别为()ABC1

    2、D52、一元二次方程,用配方法解该方程,配方后的方程为( )ABCD3、下列说法正确的是()近似数精确到十分位;在,中,最小的是;如图所示,在数轴上点所表示的数为;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;如图,在内一点到这三条边的距离相等,则点是三个角平分线的交点A1B2C3D44、下列图形中,既是轴对称图形,又是中心对称图形的是()ABCD5、下列方程中,一定是关于x的一元二次方程的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、如图是二次函数图象的一部分,过点,对称轴为直线则错误的有()ABCD2、如图,在中,点D,E分别为,上的

    3、点,且将绕点A逆时针旋转至点B,A,E在同一条直线上,连接,下列结论正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 ABCD旋转角为3、抛物线y=ax2+bx+c(a0)的顶点为D(1,2),与x轴的一个交点A在点(3,0)和(2,0)之间,其部分图象如图,则以下结论中正确的是()Ab24ac0B当x1时,y随x增大而减小Ca+b+c0D若方程ax2+bx+c-m=0没有实数根,则m2E3a+c04、已知抛物线上部分点的横坐标x与纵坐标y的对应值如表所示,对于下列结论:x-10123y30-1m3抛物线开口向下;抛物线的对称轴为直线;方程的两根为0和2;当时,x的取值范围是或正确的

    4、是()ABCD5、观察如图推理过程,错误的是()A因为的度数为,所以B因为,所以C因为垂直平分,所以D因为,所以第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、在平面直角坐标系中,将点A先向右平移4个单位,再向下平移6个单位得到点B,如果点A和点B关于原点对称,那么点A的坐标是_2、二次函数y=ax2+bx+c(a0)图象上部分点的坐标(x,y)对应值列表如下:x-3-2-101y-4-3-4-7-12则该图象的对称轴是_3、如图,是上的三个点,四边形是平行四边形,连接,若, 线 封 密 内 号学级年名姓 线 封 密 外 则_.4、对于任意实数,抛物线与轴都有公共点则的

    5、取值范围是_5、如图,点O是正方形ABCD的对称中心,射线OM,ON分别交正方形的边AD,CD于E,F两点,连接EF,已知,(1)以点E,O,F,D为顶点的图形的面积为_;(2)线段EF的最小值是_四、解答题(5小题,每小题8分,共计40分)1、解方程(组):(1)(2);(3)x(x7)8(7x).2、解下列方程:(1);(2)3、关于x的一元二次方程kx2+(k+1)x+0(1)当k取何值时,方程有两个不相等的实数根?(2)若其根的判别式的值为3,求k的值及该方程的根4、已知x1,x2是关于x的一元二次方程x2-4mx+4m2-90的两实数根(1)若这个方程有一个根为-1,求m的值;(2)

    6、若这个方程的一个根大于-1,另一个根小于-1,求m的取值范围;(3)已知RtABC的一边长为7,x1,x2恰好是此三角形的另外两边的边长,求m的值5、在平面直角坐标系中,设二次函数(m是实数)(1)当时,若点在该函数图象上,求n的值(2)小明说二次函数图象的顶点在直线上,你认为他的说法对吗?为什么?(3)已知点,都在该二次函数图象上,求证:-参考答案-一、单选题1、B【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数解答【详解】解:P(2,-n)与点Q(-m,-3)关于原点对称, 线 封 密 内 号学级年名姓 线 封 密 外 2=-(-m),-n=-(-3),m=2,n=-3,

    7、故选:B【考点】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律2、D【解析】【分析】按照配方法的步骤,移项,配方,配一次项系数一半的平方.【详解】x22xm=0,x22x=m,x22x+1=m+1,(x1)2=m+1故选D【考点】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确使用3、B【解析】【分析】根据近似数的精确度定义,可判断;根据实数的大小比较,可判断;根据点在数轴上所对应的实数,即可判断;根据反证法的概念,可判断;根据角平分线的性质,可判断【详解】近似数精确到十位,故本小题错误;,最小的是,故本小题正确;在数轴上点所表示的数为,故本小题错误;用反证

    8、法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确故选B【考点】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键4、C【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;C既是轴对称图形,又是中心对称图形,故本选项符合题意;D不是轴对称图形,

    9、是中心对称图形,故本选项不符合题意故选:C 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合5、B【解析】【分析】根据一元二次方程的概念(只含一个未知数,并且含有未知数的项的次数最高为2次的整式方程是一元二次方程)逐一进行判断即可得【详解】解:A、, 当时,不是一元二次方程,故不符合题意;B、,是一元二次方程,符合题意;C、,不是整式方程,故不符合题意;D、,整理得:,不是一元二次方程,故不符合题意;故选:B【考点】本题考查了一元二次方程的

    10、定义,熟练掌握其定义是解题的关键二、多选题1、BD【解析】【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴x=1可得2a+b的符号;再由根的判别式可得,根据二次函数的对称性进而对所得结论进行判断【详解】解:A、由抛物线的开口向下知a0,对称轴为直线,得2a=b,a、b同号,即b0;故本选项正确,不符合题意;B、对称轴为,得2a=b,2a+b=4a,且a0,2a+b0;故本选项错误,符合题意;C、从图象知,该函数与x轴有两个不同的交点,所以根的判别式,即;故本选项正确,不符合题意;D、3x12,根据二次函数图象的对称性,知当x=1时,y0;又由A知,2a=

    11、b,a+b+c0;b+b+c0,即3b+2c0;故本选项错误,符合题意 线 封 密 内 号学级年名姓 线 封 密 外 故选:BD【考点】本题主要考查了二次函数图象与系数之间的关系,熟练运用对称轴的范围求2a与b的关系,二次函数与方程及不等式之间的关系是解决本题的关键2、ABC【解析】【分析】由AB=AC,B=30,得出B=C=30,BAC=120,得出将ADE绕点A逆时针旋转至点B、A、E在同一条直线上,可得旋转角为60,故D错误;由DEBC,易证AD=AE,得出BD=EC,故C正确;BE=AE+AB=AD+AC,故B正确;证明DAC=EAC,由AD=AE,得出DEAC,故A正确;即可得出结果

    12、【详解】解:AB=AC,B=30,B=C=30,BAC=120,将ADE绕点A逆时针旋转至点B、A、E在同一条直线上,则旋转角为:180120=60,故D错误;DEBC,ADE=B,AED=C,ADE=AED,AD=AE,BD=EC,故C正确;BE=AE+AB=AD+AC,故B正确;BAC=DAE=120,EAC=180-BAC=180-120=60,DAC=120-EAC=120-60=60,DAC=EAC,AD=AE,DEAC,故A正确;故选:ABC【考点】本题考查了旋转的性质、等腰三角形的判定与性质、平行线的性质等知识;熟练掌握旋转的性质与等腰三角形的性质是解题的关键3、BCDE【解析】

    13、【分析】利用图象信息,以及二次函数的性质即可一一判断【详解】二次函数与x轴有两个交点,b-4ac0,故A错误,观察图象可知:当x-1时,y随x增大而减小,故B正确,抛物线与x轴的另一个交点为在(0,0)和(1,0)之间,x=1时,y=a+b+c0,故C正确,当m2时,抛物线与直线y=m没有交点,方程ax+bx+c-m=0没有实数根,故D正确,对称轴x=-1= ,b=2a,a+b+c0, 线 封 密 内 号学级年名姓 线 封 密 外 3a+c0,故E正确,故答案为BCDE【考点】本题考查了二次函数图象与系数的关系,根的判别式、抛物线与x轴的交点等知识,解题的关键是灵活运用所学知识解决问题,属于中

    14、考常考题型4、CD【解析】【分析】根据表格可知直线x1是抛物线对称轴,此时有最小值,与x轴交点坐标为(0,0)(2,0)据此可判断,根据与x轴交点坐标结合开口方向可判断【详解】解:从表格可以看出,函数的对称轴是直线x1,顶点坐标为(1,1),此时有最小值函数与x轴的交点为(0,0)、(2,0),抛物线yax2+bx+c的开口向上故错误;抛物线yax2+bx+c的对称轴为直线x1故错误;方程ax2+bx+c0的根为0和2故正确;当y0时,x的取值范围是x0或x2故正确;故选CD【考点】本题考查了二次函数的图象和性质解题的关键在于根据表格获取正确的信息5、ABC【解析】【分析】A.根据定理“圆心角

    15、的度数等于它所对的弧的度数。”可得.B.根据定理“同圆或等圆中,相等的圆心角所对的弧相等。”可得.C.根据“垂径定理”及弦的定义可得.D.根据“在同圆或等圆中,若两个圆心角、两条弧、两条弦、两条弦的弦心距中得到的四组量中有一组量相等,则对应的其余各组量也相等。”可得.【详解】由定理“圆心角的度数等于它所对的弧的度数。”A. 的度数是 ,故选项A错误.B.由定理“同圆中相等的圆心角所对的弧相等。”,B选项题干中不是同一个圆,故选项B错误.C.由“垂径定理:垂直于弦(非直径)的直径平分这条弦,并且平分弦所对的两条弧。 没有过圆心,不是直径,并且,根据弦的定义,不是圆O的弦,因此无法判断 ,故选项C

    16、错误.D. 即 由定理“在同圆或等圆中,若两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,则对应的其余各组量也相等。”所以,故选项D正确.【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题旨在考查圆,圆心角,所对应的圆弧及弦的相关定义及性质定理,熟练掌握圆的相关定理是解题的关键.三、填空题1、【解析】【分析】先按题目要求对A、B点进行平移,再根据原点对称的特征:横纵坐标互为相反数进行列方程,求解【详解】设,向右平移4个单位,再向下平移6个单位得到 A、B关于原点对称,解得,故答案为:【考点】本题考查点的平移和原点对称的性质,掌握这些是解题关键2、【解析】【分析】根据二次函数

    17、的图象具有对称性和表格中的数据,可以计算出该函数图象的对称轴【详解】解:由表格可得,当x取-3和-1时,y值相等,该函数图象的对称轴为直线,故答案为:【考点】本题考查二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的对称性解答3、64【解析】【分析】先根据圆周角定理求出O的度数,然后根据平行四边形的对角相等求解即可.【详解】,O=2,四边形是平行四边形,O=.故答案为:64.【考点】本题考查了圆周角定理,平行四变形的性质,熟练掌握圆周角定理是解答本题的关键.在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半4、【解析】【分析】 线 封 密 内 号学

    18、级年名姓 线 封 密 外 由题意易得,则有,然后设,由无论a取何值时,抛物线与轴都有公共点可进行求解【详解】解:由抛物线与轴都有公共点可得:,即,设,则,要使对于任意实数,抛物线与轴都有公共点,则需满足小于等于的最小值即可,即的最小值为,;故答案为【考点】本题主要考查二次函数的综合,熟练掌握二次函数的综合是解题的关键5、 1 【解析】【分析】(1)连接AO,DO,证明,可得,求出即可求解;(2)设,则,由勾股定理可得,即可求EF的最小值【详解】解:(1)连接AO,DO,四边形ABCD是正方形,O是中心,故答案为:1;(2)设,则, , 线 封 密 内 号学级年名姓 线 封 密 外 在中,当时,

    19、EF有最小值,故答案为:【考点】本题考查正方形的性质,全等三角形的判定与性质,二次函数的性质,熟练掌握二次函数求最值的方法是解题的关键四、解答题1、 (1)(2)x(3)x17,x28【解析】【分析】(1)根据代入消元法,可得方程组的解;(2)根据等式的性质,化为整式方程,根据解整式方程,可得答案;(3)先移项,再提公因式,再求解即可(1)由,得y3x4将代入,得x2(3x4)3,解得x1,将x1代入,解得y1.所以原方程组的解为;(2);解:方程两边都乘(x1)(x1),得(x1)23(x1)(x1),解得x.经检验,x是原方程的解(3)x(x7)8(7x).解:原方程可变形为x(x7)8(

    20、x7)0,(x7)(x8)0.x70,或x80.x17,x28.【考点】本题考查了解二元一次方程组、分式方程及一元二次方程,利用等式的性质得出整式方程是解题关键,要检验分时方程的根2、(1),;(2),【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】(1)确定公式中的a,b,c的值,计算判别式的值验证方程是否有根,若有解,将a,b,c的值代入求根公式即可(2)利用因式分解法解一元二次方程即可得【详解】解:(1),a=3,b=4,c=1, ,;(2)【考点】本题考查了解一元二次方程,主要解法包括:直接开平方法、配方法、公式法、因式分解法、换元法等,熟练掌握各解法公式法掌握用于一般

    21、式,确定a、b、c的值,然后检验方程是否有解,若有解代入公式计算解决问题,因式分解法适合特殊的一元二次方程,要针对不同的方程选取恰当的方法是解题关键3、(1)且;(2)【解析】【分析】(1)由方程有两个不相等的实数根,得到,列不等式结合,从而可得答案;(2)利用 列方程求解 再把的值代入原方程,解方程即可得到答案【详解】解:(1)该方程的判别式为:,方程有两个不相等的实数根,2k+10,解得,又该方程为一元二次方程,k的取值范围为:且(2)由题意得2k+13解得k1,原方程为: 解得:【考点】本题考查的是一元二次方程的根的判别式,一元二次方程的解法,掌握一元二次方程根的判别式与公式法解一元二次

    22、方程是解题的关键4、 (1)m的值为1或-2 线 封 密 内 号学级年名姓 线 封 密 外 (2)-2m1(3)m或m【解析】【分析】(1)把x=-1代入方程,列出m的一元二次方程,求出m的值;(2)首先用m表示出方程的两根,然后列出m的不等式组,求出m的取值范围;(3)首先用m表示出方程的两根,分直角ABC的斜边长为7或2m+3,根据勾股定理求出m的值.(1)解:x1,x2是一元二次方程x2-4mx+4m2-90的两实数根,这个方程有一个根为-1,将x-1代入方程x2-4mx+4m2-90,得1+4m+4m2-90解得m1或m-2m的值为1或-2(2)解:x2-4mx+4m29,(x-2m)

    23、29,即x-2m3x12m+3,x22m-32m+32m-3,解得-2m1m的取值范围是-2m1(3)解:由(2)可知方程x2-4mx+4m2-90的两根分别为2m+3,2m-3若RtABC的斜边长为7,则有49(2m+3)2+(2m-3)2解得m边长必须是正数,m若斜边为2m+3,则(2m+3)2(2m-3)2+72解得m综上所述,m或m【考点】本题主要考查了根的判别式与根与系数的关系的知识,解答本题的关键是熟练掌握根与系数关系以及根的判别式的知识,此题难度一般.5、 (1)-7(2)对,理由见解析(3)见解析【解析】【分析】(1)把m=2,点A(8,n)代入解析式即可求解;(2)由抛物线解

    24、析式,得顶点是,把x2m代入,求出y值与3-m比较,若相等则即可判断小明说法正确,否则说法错误;(3)由点P(a+1,c),Q(4m-5+a,c)的纵坐标相同,即可求得对称轴为直线x= 线 封 密 内 号学级年名姓 线 封 密 外 =a+2m-2,即可得出a+2m-2=2m,求得a=2,得到P(3,c),代入解析式即可得到 ,根据二次函数的性质即可证得结论(1)解:当m2时,A(8,n)在函数图象上,(2)解:由题意得,顶点是当x2m时,顶点在直线上(3)证明:P(a+1,c),Q(4m-5+a,c)都在二次函数的图象上对称轴是直线a+2m-22m ,a2,P(3,c),把P(3,c)代入抛物线解析式,得,-20,c有最大值为,c【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年综合复习人教版九年级数学上册期末专项测评试题 A卷(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-709413.html
    相关资源 更多
  • 专题4.1 图形的相似(能力提升)(解析版).docx专题4.1 图形的相似(能力提升)(解析版).docx
  • 专题4.1 图形的相似(知识解读)-2022-2023学年九年级数学上册《同步考点解读•专题训练》(北师大版).docx专题4.1 图形的相似(知识解读)-2022-2023学年九年级数学上册《同步考点解读•专题训练》(北师大版).docx
  • 专题4.1 函数(知识讲解)-2022-2023学年八年级数学上册基础知识专项讲练(北师大版).docx专题4.1 函数(知识讲解)-2022-2023学年八年级数学上册基础知识专项讲练(北师大版).docx
  • 专题4.1 几何图形(知识讲解)-2022-2023学年七年级数学上册基础知识专项讲练(人教版).docx专题4.1 几何图形(知识讲解)-2022-2023学年七年级数学上册基础知识专项讲练(人教版).docx
  • 专题4.1 任意角和弧度制及任意角的三角函数(解析版).docx专题4.1 任意角和弧度制及任意角的三角函数(解析版).docx
  • 专题4-观察物体-2023年四年级数学下册暑假专项培优(北师大版).docx专题4-观察物体-2023年四年级数学下册暑假专项培优(北师大版).docx
  • 专题4-2数列的通项与求和 (专题分层练)(5种题型)解析版.docx专题4-2数列的通项与求和 (专题分层练)(5种题型)解析版.docx
  • 专题4-2数列的通项与求和 (专题分层练)(5种题型)原卷版.docx专题4-2数列的通项与求和 (专题分层练)(5种题型)原卷版.docx
  • 专题4 能量-教科版科学六年级上册.docx专题4 能量-教科版科学六年级上册.docx
  • 专题4 第17课时 动量观点在电磁感应中的应用.docx专题4 第17课时 动量观点在电磁感应中的应用.docx
  • 专题4 第16课时 电磁感应.docx专题4 第16课时 电磁感应.docx
  • 专题4 第15课时 直流电路与交流电路.docx专题4 第15课时 直流电路与交流电路.docx
  • 专题4 用导数研究函数的最值(解析版).docx专题4 用导数研究函数的最值(解析版).docx
  • 专题4 用导数研究函数的最值(原卷版).docx专题4 用导数研究函数的最值(原卷版).docx
  • 专题4 热学(解析版).docx专题4 热学(解析版).docx
  • 专题4 热学(原卷版).docx专题4 热学(原卷版).docx
  • 专题4 气体的制取实验(解析版).docx专题4 气体的制取实验(解析版).docx
  • 专题4 气体的制取实验(原卷版).docx专题4 气体的制取实验(原卷版).docx
  • 专题4 有理数的乘方-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(解析版).docx专题4 有理数的乘方-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(解析版).docx
  • 专题4 有理数的乘方-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(原卷版).docx专题4 有理数的乘方-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(原卷版).docx
  • 专题4 因式分解 2023年中考数学一轮复习专题训练(北京专用).docx专题4 因式分解 2023年中考数学一轮复习专题训练(北京专用).docx
  • 专题4 单词大闯关-首字母填空(205道题)-2021-2022学年七年级英语下学期期末备考冲刺满分专题(人教版).docx专题4 单词大闯关-首字母填空(205道题)-2021-2022学年七年级英语下学期期末备考冲刺满分专题(人教版).docx
  • 专题4 分子空间结构与物质性质-【知识清单】2022-2023学年高二化学期末单元复习知识清单(苏教版2019选择性必修2).docx专题4 分子空间结构与物质性质-【知识清单】2022-2023学年高二化学期末单元复习知识清单(苏教版2019选择性必修2).docx
  • 专题4 光现象 4.5光的色散(教师版).docx专题4 光现象 4.5光的色散(教师版).docx
  • 专题4 光现象 4.4光的折射(学生版).docx专题4 光现象 4.4光的折射(学生版).docx
  • 专题4 光现象 4.3平面镜成像(教师版).docx专题4 光现象 4.3平面镜成像(教师版).docx
  • 专题4 光现象 4.3平面镜成像(学生版).docx专题4 光现象 4.3平面镜成像(学生版).docx
  • 专题4 光现象 4.1 光的直线传播(教师版).docx专题4 光现象 4.1 光的直线传播(教师版).docx
  • 专题4 光现象 4.1 光的直线传播(学生版).docx专题4 光现象 4.1 光的直线传播(学生版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1