分享
分享赚钱 收藏 举报 版权申诉 / 24

类型2022年解析卷人教版九年级数学上册期末综合复习试题 卷(Ⅱ)(含答案解析).docx

  • 上传人:a****
  • 文档编号:712275
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:24
  • 大小:378.45KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年解析卷人教版九年级数学上册期末综合复习试题 卷含答案解析 2022 解析 卷人教版 九年级 数学 上册 期末 综合 复习 试题 答案
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末综合复习试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设

    2、有x个队参赛,根据题意,可列方程为()ABCD2、直线不经过第二象限,则关于的方程实数解的个数是().A0个B1个C2个D1个或2个3、从下列命题中,随机抽取一个是真命题的概率是()(1)无理数都是无限小数;(2)因式分解;(3)棱长是的正方体的表面展开图的周长一定是;(4)弧长是,面积是的扇形的圆心角是ABCD14、从下列命题中,随机抽取一个是真命题的概率是()(1)无理数都是无限小数;(2)因式分解;(3)棱长是的正方体的表面展开图的周长一定是;(4)两条对角线长分别为6和8的菱形的周长是40ABCD15、若点P(2,)与点Q(,)关于原点对称,则mn的值分别为()ABC1D5二、多选题(

    3、5小题,每小题4分,共计20分)1、对于二次函数,下列说法不正确的是()A图像开口向下B图像的对称轴是直线C函数最大值为0D随的增大而增大2、下列方程中,有实数根的方程是()A(x1)22B(x+1)(2x3)0C3x22x10Dx2+2x+403、如图在四边形中,为的中点,以点为圆心、长为半径作圆,恰好使得点在圆上,连接,若,则下列说法中正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 A是劣弧的中点B是圆的切线CD4、已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论正确的有()AA、B关于x轴对称;BA、B关于y轴对称;CA、B关于原点对称;D若A、B之间的距离

    4、为45、如图,二次函数yax2+bx+c的图象经过点A(4,0),其对称轴为直线x1,下列结论正确的是()Aa+b+c0Babc0C2a+b0D若P(6,y1),Q(m,y2)是抛物线上两点,且y1y2,则6m4第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,抛物线yx2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CDABAD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为_2、如图,AB是O的直径,弦CDAB于点E若AB10,AE1,则弦CD的长是_3、一个圆锥的底面半径r6,高h8,则这个圆锥的侧

    5、面积是_4、二次函数的部分图象如图所示,由图象可知,方程的解为_;不等式的解集为_5、二次函数y=ax2+bx+c(a0)图象上部分点的坐标(x,y)对应值列表如下:x-3-2-101y-4-3-4-7-12 线 封 密 内 号学级年名姓 线 封 密 外 则该图象的对称轴是_四、解答题(5小题,每小题8分,共计40分)1、已知关于x的方程x2+(m2)x2m0(1)求证:不论m取何值,此方程总有实数根;(2)若m为整数,且方程的一个根小于2,请写出一个满足条件的m的值2、某超市经销一种商品,每件成本为50元经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1

    6、元,则每个月的销售量将减少10件设该商品每件的销售价为x元,每个月的销售量为y件(1)求y与x的函数表达式;(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?3、受“新冠”疫情的影响,某销售商在网上销售A、B两种型号的“手写板”,获利颇丰已知A型,B型手写板进价、售价和每日销量如表格所示:进价(元/个)售价(元/个)销量(个/日)A型600900200B型8001200400根据市场行情,该销售商对A手写板降价销售,同时对B手写板提高售价,此时发现A手写板每降低5就可多卖1,B手写板每提高5就少卖1,要保持每天销售总量不变,设其中A手写板每天多销售x,每天总获利的利润

    7、为y(1)求y、x间的函数关系式并写出x取值范围;(2)要使每天的利润不低于234000元,直接写出x的取值范围;(3)该销售商决定每销售一个B手写板,就捐a元给因“新冠疫情”影响的困难家庭,当时,每天的最大利润为229200元,求a的值4、解方程:(1)x2x20;(2)3x(x2)2x5、已知关于的一元二次方程有实数根.(1)求的取值范围.(2)若该方程的两个实数根为、,且,求的值.-参考答案-一、单选题1、A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可【详解】解:设有x个队参赛,根据题意,可列方程为:x(x1)3

    8、6,故选A【考点】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.2、D【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据直线不经过第二象限,得到,再分两种情况判断方程的解的情况.【详解】直线不经过第二象限,方程,当a=0时,方程为一元一次方程,故有一个解,当a0,方程有两个不相等的实数根,故选:D.【考点】此题考查一次函数的性质:利用函数图象经过的象限判断字母的符号,方程的解的情况,注意易错点是a的取值范围,再分类讨论.3、C【解析】【分析】分别判断各命题的真假,再利用概率公式求解.【详解】解:(1)无理数都是无限小数,是真命题,(2)因式分解,

    9、是真命题,(3)棱长是的正方体的表面展开图的周长一定是,是真命题,(4)设扇形半径为r,圆心角为n,弧长是,则=,则,面积是,则=,则360240,则,则n=360024=150,故扇形的圆心角是,是假命题,则随机抽取一个是真命题的概率是,故选C.【考点】本题考查了命题的真假,概率,扇形的弧长和面积,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.4、C【解析】【分析】分别判断各命题的真假,再利用概率公式求解.【详解】(1)无理数都是无限小数,是真命题,(2)因式分解,是真命题,(3)棱长是的正方体的表面展开图的周长一定是,是真命题,(4)菱形

    10、的对角线长为6和8根据菱形的性质,对角线互相垂直且平分,利用勾股定理可求得菱形的边长为5,则菱形的周长为,是假命题 线 封 密 内 号学级年名姓 线 封 密 外 则随机抽取一个是真命题的概率是,故选:C【考点】本题考查了命题的真假,概率,菱形的性质,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.5、B【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数解答【详解】解:P(2,-n)与点Q(-m,-3)关于原点对称,2=-(-m),-n=-(-3),m=2,n=-3, 故选:B【考点】本题考查了关于原点对称的点的坐标,解决本题的关键

    11、是掌握好对称点的坐标规律二、多选题1、ACD【解析】【分析】根据题目中的函数解析式,可以判断各个选项中的说法是否正确【详解】解:二次函数,a20,该函数的图象开口向上,故选项A错误,图象的对称轴是直线x1,故选项B正确,函数的最小值是y0,故选项C错误,当x1时随的增大而增大,故选项D错误,故选:A,C,D【考点】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答2、ABC【解析】【分析】根据直接开方法可确定A选项正确;根据因式分解法可确定B选项正确;根据方程的判别式,当时,方程有两个不等的实数根,当时,方程有两个相等的实数根,当时,方程无实数根,可判断C

    12、选项正确,D选项错误【详解】A.,解得:,方程有实数根,A选项正确;B.,解得:, 线 封 密 内 号学级年名姓 线 封 密 外 方程有实数根,B选项正确;C.,方程有实数根,C选项正确;D.,方程无实数根,D选项错误故选:ABC【考点】本题考查了一元二次方程根的判断,熟练掌握根的判别式是解题的关键3、ABC【解析】【分析】直接利用圆周角定理以及结合圆心角、弧、弦的关系、切线的判定方法、平行线的判定方法、四边形内角和分别分析得出答案【详解】解:A.BAD=25,EAD=25,DAB=EAD,故此选项正确;B.BAD=25,OA=OD,ADO=BAD=25ADC=115,ODC=ADC-ADC=

    13、115-25=90,CD是O的切线,故此选项正确;CEAD=ADO=25AEDO,故此选项正确;D,OBC=360-DAB-ADC-C=360-25-115-90=130,故此选项错误故选择ABC【考点】此题主要考查了切线的判定以及圆周角与弧的关系、四边形内角和、平行线的判定方法等知识,正确掌握相关判定方法是解题关键4、BD【解析】【分析】根据点坐标关于原点对称、轴对称的特点,求出对应点坐标即可【详解】点A(-2,3)关于x轴对称的点为(-2,-3),故A错误点A(-2,3)关于y轴对称的点为(2,3),故B正确点A(-2,3)关于原点对称的点为(2,-3),故C错误 线 封 密 内 号学级年

    14、名姓 线 封 密 外 点A、点B的纵坐标相同,故A、B之间的距离为 ,故D正确故选BD【考点】本题考查了点坐标关于x,y轴对称,关于原点中心对称的特点,以及两点间距离公式,熟悉对应知识点是解决本题的关键5、ABD【解析】【分析】根据题意可得点A(4,0)关于对称轴的对称点 ,从而得到当 时, ,再由 ,可得在对称轴右侧 随 的增大而增大,从而得到当 时, ;根据图象可得 , ,可得 ;再由 ,可得;然后根据P(6,y1)关于对称轴的对称点 ,可得当y1y2时,6m4,即可求解【详解】解:二次函数yax2+bx+c的图象经过点A(4,0),其对称轴为直线x1,点A(4,0)关于对称轴的对称点 ,

    15、即当 时, ,抛物线开口向上, ,在对称轴右侧 随 的增大而增大,当 时, ,故A正确;抛物线与 交于负半轴, ,对称轴为直线x1, , ,即 , ,故B正确; ,故C错误;P(6,y1)关于对称轴的对称点 ,当y1y2时,6m4,故D正确故选:ABD【考点】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质,并利用数形结合思想解答是解题的关键三、填空题1、2【解析】【分析】利用二次函数图象上点的坐标特征可求出点A,B,C,D的坐标,由点A,D的坐标,利用待定系数法可求出直线AD的解析式,利用一次函数图象上点的坐标特征可求出点E的坐标,再利用二次函数图象上点的坐标特征可得出点P,

    16、Q的坐标,进而可求出线段PQ的长【详解】解:当y0时,x2+x+20,解得:x12,x24,点A的坐标为(2,0); 线 封 密 内 号学级年名姓 线 封 密 外 当x0时,yx2+x+22,点C的坐标为(0,2);当y2时,x2+x+22,解得:x10,x22,点D的坐标为(2,2)设直线AD的解析式为ykx+b(k0),将A(2,0),D(2,2)代入ykx+b,得:解得:直线AD的解析式为yx+1当x0时,yx+11,点E的坐标为(0,1)当y1时,x2+x+21,解得:x11,x21+,点P的坐标为(1,1),点Q的坐标为(1+,1),PQ1+(1)2故答案为:2【考点】本题考查了抛物

    17、线与x轴的交点、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征求出点P,Q的坐标是解题的关键2、6【解析】【分析】连接OC,根据勾股定理求出CE,根据垂径定理计算即可【详解】连接OC,AB是O的直径,弦CDAB,CD2CE,OEC90,AB10,AE1,OC5,OE514,在RtCOE中,CE3,CD2CE6,故答案为6 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键3、60【解析】【分析】利用圆锥的侧面积公式:,求出圆锥的

    18、母线即可解决问题【详解】解:圆锥的母线,圆锥的侧面积=106=60,故答案为:60【考点】本题考查了圆锥的侧面积,勾股定理等知识,解题的关键是记住圆锥的侧面积公式4、 , 或【解析】【分析】根据抛物线的对称轴和抛物线与x轴一个交点求出另一个交点,再通过二次函数与方程的两根,二次函数与不等式解集的关系求得答案【详解】抛物线的对称轴为,抛物线与x轴一个交点为(5,0)抛物线与x轴另一个交点为(-1,0)方程的解为:,由图像可知,不等式的解集为:或故答案为:,;或【考点】本题考查了二次函数的图像性质,掌握二次函数与方程的两根,二次函数与不等式的解集关系,是解决问题的关键5、【解析】【分析】根据二次函

    19、数的图象具有对称性和表格中的数据,可以计算出该函数图象的对称轴【详解】解:由表格可得,当x取-3和-1时,y值相等,该函数图象的对称轴为直线,故答案为:【考点】本题考查二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的对称性解答四、解答题1、 (1)证明见解析(2)1(答案不唯一) 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】(1)由题意知,判断其与0的关系,即可得出结论;(2)表示出方程的两根,根据要求进行求解即可(1)证明:由题意知(m+2)20,0,关于x的方程x2+(m2)x2m0总有实数根;(2)解:由(1)知,(m+2)2,x,方程有

    20、一根小于2,m2,m2,m为整数,满足条件的m的一个值为1【考点】本题考查了一元二次方程的根解题的关键在于利用判根公式确定方程根的个数,利用公式求方程的根2、(1)y-10x+900;(2)每件销售价为70元时,获得最大利润;最大利润为4000元【解析】【分析】(1)根据等量关系“利润(售价进价)销量”列出函数表达式即可(2)根据(1)中列出函数关系式,配方后依据二次函数的性质求得利润最大值【详解】解:(1)根据题意,y30010(x60)=-10x+900,y与x的函数表达式为:y-10x+900;(2)设利润为w,由(1)知:w(x50)(-10x+900)=10x21400x45000,

    21、w10(x70)24000,每件销售价为70元时,获得最大利润;最大利润为4000元【考点】本题考查的是二次函数在实际生活中的应用此题难度不大,解题的关键是理解题意,找到等量关系,求得二次函数解析式3、(1)(),且x为整数;(2),且x为整数;(3)a=30【解析】【分析】(1)根据题意列函数关系式和不等式组,于是得到结论;(2)根据题意列方程和不等式,于是得到结论;(3)根据题意列函数关系式,然后根据二次函数的性质即可得到结论【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:(1)由题意得,解得,故的取值范围为且为整数;(2)的取值范围为理由如下:,当时,解得:或要使,得;,;(

    22、3)设捐款后每天的利润为元,则,对称轴为,抛物线开口向下,当时,随的增大而增大,当时,最大,解得【考点】本题考查了二次函数的应用,一元一次不等式的应用,列函数关系式等等,最大销售利润的问题常利用函数的增减性来解答4、 (1)x12,x21(2)x1,x22【解析】【分析】(1)利用因式分解法解方程;(2)利用因式分解法解方程;(1)解:x2x20,(x2)(x1)0,x20或x10,x12,x21(2)解:3x(x2)2x,3x(x2)(x2)0,(3x1)(x2)0, 线 封 密 内 号学级年名姓 线 封 密 外 3x10或x20,x1,x22【考点】本题考查了因式分解法解一元二次方程:将方

    23、程的右边化为零,把方程的左边分解为两个一次因式的积,令每个因式分别为零,解这两个一元一次方程,它们的解就是原方程的解5、(1).(2).【解析】【分析】(1)根据方程的系数结合根的判别式0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;(2)由根与系数的关系可得出x1+x2=6,x1x2=4m+1,结合|x1-x2|=4可得出关于m的一元一次方程,解之即可得出m的值【详解】(1)关于x的一元二次方程x2-6x+(4m+1)=0有实数根,=(-6)2-41(4m+1)0,解得:m2;(2)方程x2-6x+(4m+1)=0的两个实数根为x1、x2,x1+x2=6,x1x2=4m+1,(x1-x2)2=(x1+x2)2-4x1x2=42,即32-16m=16,解得:m=1【考点】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当0时,方程有实数根”;(2)利用根与系数的关系结合|x1-x2|=4,找出关于m的一元一次方程

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年解析卷人教版九年级数学上册期末综合复习试题 卷(Ⅱ)(含答案解析).docx
    链接地址:https://www.ketangku.com/wenku/file-712275.html
    相关资源 更多
  • 四川省校2022-2023学年高一物理下学期期末考试试题(Word版附答案).docx四川省校2022-2023学年高一物理下学期期末考试试题(Word版附答案).docx
  • 四川省校2022-2023学年高一数学下学期期末试题(Word版附解析).docx四川省校2022-2023学年高一数学下学期期末试题(Word版附解析).docx
  • 四川省校2021-2022学年高二理科数学下学期期中考试试题(Word版附解析).docx四川省校2021-2022学年高二理科数学下学期期中考试试题(Word版附解析).docx
  • 四川省校2021-2022学年高二物理下学期期中试题(Word版附解析).docx四川省校2021-2022学年高二物理下学期期中试题(Word版附解析).docx
  • 四川省校2021-2022学年高一数学(理)下学期期中考试试题(Word版附解析).docx四川省校2021-2022学年高一数学(理)下学期期中考试试题(Word版附解析).docx
  • 四川省校2021-2022学年高一数学(文)下学期期中考试试题(Word版附解析).docx四川省校2021-2022学年高一数学(文)下学期期中考试试题(Word版附解析).docx
  • 四川省2022-2023学年高二理科数学第一次零诊模拟考试试题(Word版附解析).docx四川省2022-2023学年高二理科数学第一次零诊模拟考试试题(Word版附解析).docx
  • 四川省2022-2023学年高二文科数学下学期6月月考试题(Word版附解析).docx四川省2022-2023学年高二文科数学下学期6月月考试题(Word版附解析).docx
  • 四川省 2024届高三数学(理)零诊模拟考试试题(Word版附解析).docx四川省 2024届高三数学(理)零诊模拟考试试题(Word版附解析).docx
  • 四川省 2024届高三数学(文)零诊模拟考试试题(Word版附解析).docx四川省 2024届高三数学(文)零诊模拟考试试题(Word版附解析).docx
  • 四川省 2024届高三上学期一诊模拟数学(文)试题(Word版附答案).docx四川省 2024届高三上学期一诊模拟数学(文)试题(Word版附答案).docx
  • 四川省 2024届高三一模数学(理)试题(Word版附解析).docx四川省 2024届高三一模数学(理)试题(Word版附解析).docx
  • 四川省 2023届高考文科数学热身试题(Word版附解析).docx四川省 2023届高考文科数学热身试题(Word版附解析).docx
  • 四川省 2023届高三英语冲刺模拟试题(Word版附解析).docx四川省 2023届高三英语冲刺模拟试题(Word版附解析).docx
  • 四川省 2023届高三理科数学下学期高考模拟试题(Word版附解析).docx四川省 2023届高三理科数学下学期高考模拟试题(Word版附解析).docx
  • 四川省 2023届高三物理下学期热身考试试题(Word版附解析).docx四川省 2023届高三物理下学期热身考试试题(Word版附解析).docx
  • 四川省 2023-2024学年高二上学期期中考试历史试题(Word版附解析).docx四川省 2023-2024学年高二上学期期中考试历史试题(Word版附解析).docx
  • 四川省 2023-2024学年高二上学期备考期末英语模拟试卷4(Word版附解析).docx四川省 2023-2024学年高二上学期备考期末英语模拟试卷4(Word版附解析).docx
  • 四川省 2023-2024学年高二上学期12月阶段性考试物理试题(Word版附解析).docx四川省 2023-2024学年高二上学期12月阶段性考试物理试题(Word版附解析).docx
  • 四川省 2023-2024学年高三高三上学期一诊模拟考试物理试卷(Word版附解析).docx四川省 2023-2024学年高三高三上学期一诊模拟考试物理试卷(Word版附解析).docx
  • 四川省 2023-2024学年高三生物上学期10月阶段试题(Word版附解析).docx四川省 2023-2024学年高三生物上学期10月阶段试题(Word版附解析).docx
  • 四川省 2023-2024学年高三物理上学期开学考试试题(Word版附解析).docx四川省 2023-2024学年高三物理上学期开学考试试题(Word版附解析).docx
  • 四川省 2023-2024学年高三物理上学期10月阶段性考试试题(Word版附解析).docx四川省 2023-2024学年高三物理上学期10月阶段性考试试题(Word版附解析).docx
  • 四川省 2023-2024学年高一上学期期中物理试题(Word版附解析).docx四川省 2023-2024学年高一上学期期中物理试题(Word版附解析).docx
  • 四川省 2023-2024学年高一上学期期中化学试题(Word版附解析).docx四川省 2023-2024学年高一上学期期中化学试题(Word版附解析).docx
  • 四川省 2022-2023学年高二英语下学期期中考试试题(Word版附解析).docx四川省 2022-2023学年高二英语下学期期中考试试题(Word版附解析).docx
  • 四川省 2022-2023学年高二物理下学期(2024届)零诊模拟考试试卷(Word版附答案).docx四川省 2022-2023学年高二物理下学期(2024届)零诊模拟考试试卷(Word版附答案).docx
  • 四川省 2022-2023学年高二数学(理)下学期期中试题(Word版附解析).docx四川省 2022-2023学年高二数学(理)下学期期中试题(Word版附解析).docx
  • 四川省 2022-2023学年高一生物下学期期中试题(Word版附解析).docx四川省 2022-2023学年高一生物下学期期中试题(Word版附解析).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1