2022年高考数学一轮复习 考点规范练48 直线与圆锥曲线(含解析)新人教A版(文).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高考数学一轮复习 考点规范练48 直线与圆锥曲线含解析新人教A版文 2022 年高 数学 一轮 复习 考点 规范 48 直线 圆锥曲线 解析 新人
- 资源描述:
-
1、考点规范练48直线与圆锥曲线基础巩固1.已知双曲线x2a2-y2b2=1的一条渐近线与抛物线y=x2+1只有一个公共点,则双曲线的离心率为()A.54B.5C.54D.5答案:D解析:不妨设x2a2-y2b2=1的渐近线y=bax与y=x2+1只有一个交点,由y=bax,y=x2+1得ax2-bx+a=0,所以=b2-4a2=0,即c2-a2-4a2=0,c2a2=5,e=ca=5.故选D.2.过双曲线x2a2-y2b2=1(a0,b0)的右焦点F(1,0)作x轴的垂线与双曲线交于A,B两点,O为坐标原点,若AOB的面积为83,则双曲线的渐近线方程为()A.y=32xB.y=22xC.y=23
2、xD.y=2x答案:B解析:由题意得|AB|=2b2a,SAOB=83,122b2a1=83,b2a=83.a2+b2=1,解得a=13,b=223,双曲线的渐近线方程为y=bax=22x.故选B.3.设A(x1,y1),B(x2,y2)是抛物线y=2x2上的两点,直线l是AB的垂直平分线.当直线l的斜率为12时,直线l在y轴上的截距的取值范围是()A.34,+B.34,+C.(2,+)D.(-,-1)答案:A解析:设直线l在y轴上的截距为b,则直线l的方程为y=12x+b,过点A,B的直线可设为y=-2x+m,联立方程y=2x2,y=-2x+m得2x2+2x-m=0,从而有x1+x2=-1,
3、=4+8m0,m-12.又AB的中点-12,m+1在直线l上,即m+1=-14+b,得m=b-54,将m=b-54代入4+8m0,得b34,所以直线l在y轴上的截距的取值范围是34,+.4.过抛物线C:y2=4x的焦点F,且斜率为3的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上,且MNl,则M到直线NF的距离为()A.5B.22C.23D.33答案:C解析:由题意可知抛物线的焦点F(1,0),准线l的方程为x=-1,可得直线MF:y=3(x-1),与抛物线y2=4x联立,消去y得3x2-10x+3=0,解得x1=13,x2=3.因为M在x轴的上方,所以M(3,23).因为MNl,
4、且N在l上,所以N(-1,23).因为F(1,0),所以直线NF:y=-3(x-1).所以M到直线NF的距离为|3(3-1)+23|(-3)2+12=23.5.斜率为1的直线l与椭圆x24+y2=1相交于A,B两点,则|AB|的最大值为()A.2B.455C.4105D.8105答案:C解析:设A,B两点的坐标分别为(x1,y1),(x2,y2),直线l的方程为y=x+t,由x2+4y2=4,y=x+t消去y,得5x2+8tx+4(t2-1)=0.则x1+x2=-85t,x1x2=4(t2-1)5.所以|AB|=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2=2-85t2-44(
5、t2-1)5=4255-t2,当t=0时,|AB|max=4105.6.已知双曲线x2a2-y2b2=1(a0,b0)上的一点到双曲线的左、右焦点的距离之差为4,若抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且x1x2=-12,则m的值为()A.32B.52C.2D.3答案:A解析:由双曲线的定义知2a=4,得a=2,所以抛物线的方程为y=2x2.因为点A(x1,y1),B(x2,y2)在抛物线y=2x2上,所以y1=2x12,y2=2x22,两式相减得y1-y2=2(x1-x2)(x1+x2),不妨设x1b0)的左焦点F(-2,0),上顶点B(0,2).
6、(1)求椭圆C的方程;(2)若直线y=x+m与椭圆C交于不同的两点M,N,且线段MN的中点G在圆x2+y2=1上,求m的值.解:(1)由题意可得,c=2,b=2,由a2=b2+c2得a2=22+22=8,所以a=22.故椭圆C的方程为x28+y24=1.(2)设点M,N的坐标分别为(x1,y1),(x2,y2),线段MN的中点G(x0,y0),由y=x+m,x28+y24=1消y,得3x2+4mx+2m2-8=0,则=96-8m20,所以-23m0)于点P,M关于点P的对称点为N,连接ON并延长交C于点H.(1)求|OH|ON|;(2)除H以外,直线MH与C是否有其他公共点?说明理由.解:(1
7、)由已知得M(0,t),Pt22p,t.又N为M关于点P的对称点,故Nt2p,t,ON的方程为y=ptx,代入y2=2px整理得px2-2t2x=0,解得x1=0,x2=2t2p.因此H2t2p,2t.所以N为OH的中点,即|OH|ON|=2.(2)直线MH与C除H以外没有其他公共点.理由如下:直线MH的方程为y-t=p2tx,即x=2tp(y-t).代入y2=2px得y2-4ty+4t2=0,解得y1=y2=2t,即直线MH与C只有一个公共点,所以除H以外直线MH与C没有其他公共点.10.设O为坐标原点,椭圆C:x2a2+y2b2=1(ab0)的左焦点为F,离心率为255.直线l:y=kx+
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-717205.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
