4.3 两角和与差的正弦、余弦和正切公式-2022届高考数学一轮复习讲义.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 4.3 两角和与差的正弦、余弦和正切公式-2022届高考数学一轮复习讲义 正弦 余弦 正切 公式 2022 高考 数学 一轮 复习 讲义
- 资源描述:
-
1、 4.3 两角和与差的正弦、余弦和正切公式一、学习目标1. 掌握两角和与差的正弦、余弦、正切公式;2. 掌握正弦、余弦、正切的二倍角公式;3. 学会给值求值、给值求角,掌握角的配凑.二、知识要点1. 两角和与差的正弦、余弦和正切公式:(1) ;(2) ;(3) .2. 二倍角正弦、余弦和正切公式:(1) ;(2);(2) .3. 降次公式:(1),. 升次公式:(1); (2).三、 课前热身1=( )A B C D【答案】D2若,则( )A B C D【答案】B3若 ,则( )A B C D【答案】D4若,则( )A B C D【答案】A5已知 (0,),则( )A B C D【答案】B四、
2、典例分析例1(1)设sin,则( )A B C D(2)已知,且,则_.【答案】(1)A; (2).例2.(1)若,则( ) A. B. C. D.(2)已知,则( )A B CD(3)设为锐角,若,则的值为_.【答案】(1)C; (2)B; (3)例3.(1)已知为锐角,且,则_.(2)已知,且,则_.【答案】(1); (2).例4如图,在平面直角坐标系中,以轴为始边做两个锐角,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为(1)求的值; (2)求的值【答案】(1); (2).五、课外作业1.若,则( )A B C D【答案】D2若,则( )A B C D【答案】D3若ta
3、n+ =4,则( )A B C D【答案】D4设,且,则( )A B C D【答案】C5已知点 的坐标为,将绕坐标原点逆时针旋转至,则点的纵坐标为( )A B C D【答案】D6已知,tan=2,则=_【答案】7已知,则的值是_【答案】8已知,,则_.【答案】9.已知,则的值是_【答案】10已知则的值是_【答案】11已知.(1)求的值;(2)求的值.【答案】(1);(2)12已知,且(1)求的值; (2)求.【答案】(1); (2)13 已知为锐角,(1)求的值;(2)求的值【答案】(1); (2).14已知角的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P()(1)求sin(+)的值;(2)若角满足sin(+)=,求cos的值【答案】(1);(2) 或 .
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
