《创新设计-课堂讲义》2016-2017学年高中数学北师大版选修1-2练习:第四章 数系的扩充与复数的引入2.2 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计-课堂讲义
- 资源描述:
-
1、2.2复数的乘法与除法明目标、知重点1.掌握复数代数形式的乘法和除法运算.2.理解复数乘法的交换律、结合律和乘法对加法的分配律.3.理解共轭复数的概念1复数的乘法法则设z1abi,z2cdi(a,b,c,dR),则z1z2(abi)(cdi)(acbd)(adbc)i.2复数乘法的运算律对任意复数z1、z2、z3C,有交换律z1z2z2z1结合律(z1z2)z3z1(z2z3)乘法对加法的分配律z1(z2z3)z1z2z1z33.共轭复数如果两个复数满足实部相等,虚部互为相反数时,称这两个复数为共轭复数,z的共轭复数用表示即zabi,则abi.4复数的除法法则设z1abi,z2cdi(cdi0
2、),则i.情境导学我们学习过实数的乘法运算及运算律,那么复数的乘法如何进行运算,复数的乘法满足运算律吗?探究点一复数乘除法的运算思考1怎样进行复数的乘法?答两个复数相乘,类似于两个多项式相乘,只要把已得结果中的i2换成1,并且把实部与虚部分别合并即可思考2复数的乘法与多项式的乘法有何不同?答复数的乘法与多项式乘法是类似的,有一点不同即必须在所得结果中把i2换成1.例 1计算:(1)(12i)(34i)(2i);(2)(34i)(34i);(3)(1i)2.解(1)(12i)(34i)(2i)(112i)(2i)2015i;(2)(34i)(34i)32(4i)29(16)25;(3)(1i)2
3、12ii22i.反思与感悟复数的乘法可以按多项式的乘法法则进行,注意选用恰当的乘法公式进行简便运算,例如平方差公式、完全平方公式等跟踪训练1计算:(1)(2i)(2i);(2)(12i)2.解(1)(2i)(2i)4i24(1)5;(2)(12i)214i(2i)214i4i234i.思考3如何理解复数的除法运算法则?答复数的除法先写成分式的形式,再把分母实数化(方法是分母与分子同时乘以分母的共轭复数,若分母是纯虚数,则只需同时乘以i)例 2计算:(1);(2)()6.解(1)原式;(2)方法一原式6i61i.方法二(技巧解法)原式6i61i.反思与感悟复数的除法是分子、分母同乘以分母的共轭复
4、数跟踪训练2计算:(1);(2).解(1)1i.(2)13i.探究点二共轭复数及其应用思考1像34i和34i这样的两个复数我们称为互为共轭复数,那么如何定义共轭复数呢?答一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫作互为共轭复数通常记复数z的共轭复数为.虚部不等于0的两个共轭复数也叫作共轭虚数思考2复数abi的共轭复数如何表示?这两个复数之积是实数还是虚数?答复数abi的共轭复数可表示为abi,由于 (abi)(abi)a2b2 ,所以两个共轭复数之积为实数思考3共轭复数有哪些性质,这些性质有什么作用?答(1)在复平面上,两个共轭复数对应的点关于实轴对称(2)实数的共轭复数是它
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-787700.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
高中英语新教材牛津译林版(2020)必修三课件 UNIT 1 PROJECT.ppt
